Topologicznie chroniona magnetoforeza liniowych kompleksów superparamagnetycznych na periodycznych potencjałach magnetycznych na bazie cienkich warstw Co

Seminarium Sprawozdawcze IFM PAN 2020

Simultaneous polydirectional transport of colloidal bipeds NATURE COMMUNICATIONS, 11:4670 (2020)

¹Mahla Mirzaee-Kakhki, ¹Adrian Ernst
²Daniel de las Heras
³Maciej Urbaniak, ³Feliks Stobiecki
⁴Jendrik Gördes, ⁴Meike Reginka, ⁴Arno Ehresmann
¹Thomas M. Fischer – spiritus movens

¹Experimentalphysik X, Physikalisches Institut, Universität Bayreuth, Niemcy.
 ²Theoretische Physik II, Physikalisches Institut, Universität Bayreuth, Niemcy.
 ³Institute of Molecular Physics, Polish Academy of Sciences, Poznań.
 ⁴Institute of Physics and Center for Interdisciplinary Nanostructure Science and Technology (CINSaT), Universität Kassel, Niemcy.

Seminarium Sprawozdawcze IFM PAN 2020

Simultaneous polydirectional transport of colloidal bipeds NATURE COMMUNICATIONS, 11:4670 (2020)

wytworzenie układów cienkowarstwowych Co/Au pomysł eksperyment teoria pierwsza redakcja Universität Bayreuth Universität Bayreuth Institute of Molecular Physics Universität Kassel Strukturyzacja bombardowanie jonowe

Topologicznie chroniona magnetoforeza liniowych kompleksów superparamagnetycznych na periodycznych potencjałach magnetycznych na bazie cienkich warstw Co

PLAN

- · Diagnostyka typu lab-on-a-chip
- · Podłoża na bazie Co
- Topologicznie chroniona magnetoforeza na periodycznych strukturach magnetycznych

Seminarium Sprawozdawcze IFM PAN 2020

Przykładowe zastosowania scalonych układów diagnostycznych (lab-on-a-chip)

- badania przesiewowe, testowanie personelu i pensjonariuszy domów seniora np. SARS COV 2, malaria, denga
- szybkie dostosowanie terapii antybiotykowej do patogenu np. sepsa
- ograniczenie ordynowania antybiotyków zapobieganie tworzeniu się lekoopornych szczepów
- testy na obecność toksyn np. mykotoksyny (przewidywany wzrost przypadków ekspozycji w związku z ociepleniem klimatu)

Wybór metod transportu reagentów w scalonych układach diagnostycznych

Wybór metod transportu reagentów w scalonych układach diagnostycznych

	próżnia	
	dyfuzja	
	przenikanie	
	ciśnienie hydrostatyczne	
	siły elektrostatyczne	pole magnesów stałych
aktywne	aktywne pompowanie	pole elektromagnesów
	pola dźwieku	pole domen w granatach ferrytowych
	siły magnetyczne	pole domen w w cienkich warstwach
		pole topograficznie strukturyzowanych cienkich warstw
		pole nie-topograficznie strukturyzowanych cienkich warstw

Schemat typowego scalonego testu przepływowego (lateral flow assay)

Schemat typowego scalonego testu przepływowego (lateral flow assay)

Techniki pasywne pozwalają na kierunkowy (również po złożonych trajektoriach) transport reagentów ale nie pozwalają na jego modyfikacje

абсорбционная накладка

maciej urbaniak

Hanpaenerine

TOTOKA

Techniki aktywne

Techniki aktywne pozwalają łatwiej dostosować przebieg testu do rezultatów poprzedzających reakcji chemicznych – np. dostosować szybkości podawania reagentu do zawartości badanych substancji w próbce.

- elektroforeza
- magnetoforeza
- aktywne pompowanie
- pole dźwięku

Pole magnetyczne pochodzące od idealnych (z jednorodnym przestrzennie namagnesowaniem) cienkich warstw różni się rozkładem przestrzennym od typowych magnesów makroskopowych ze względu na skrajnie wysoki stosunek wysokości/grubości do rozmiarów poprzecznych. Magnes Co M_s: 1.42×10^{6} A/m Rozmiar: $21 \times 21 \times 3$ nm³

Magnes Co M_s: 1.42×10^{6} A/m Rozmiar: $21 \times 21 \times 3$ nm³

Pole magnetyczne ,,grubego" magnesu

 już dla rozmiarów w płaszczyźnie tylko kilkukrotnie większych od grubości pole magnetyczne silniejsze jest w pobliżu krawędzi magnesu niż w jego środku

Moduł gradientu H² nad jednorodnie namagnesowaną cienką warstwą Magnes Co M_s: 1.42×10^{6} A/m Rozmiar: $4000 \times 4000 \times 1$ nm³

Moduł gradientu H² nad NIEJEDNORODNIE namagnesowaną cienką warstwą Magnes Co M_s: 1.42×10^{6} A/m Rozmiar: $4000 \times 4000 \times 1$ nm³

Materiał:

jednorodnie namagnesowane warstwy wielokrotne typu Co/Au z prostopadłą (do powierzchni warstwy) anizotropią magnetyczną

Technologia:

-warstwy Co/Au naniesione na podłoża Si z użyciem rozpylania jonowego (sputtering)
-fotorezyst naświetlony przez maski fotolitograficzne
-po usunięciu części fotorezystu bombardowanie jonowe (He⁺ 10 keV)
-bombardowane obszary (nie chronione rezystem) charakteryzują się niższą
koercją/polem przełączania

Eksperyment:

-odpowiednia sekwencja zewnętrznych pól magnetycznych pozwala uzyskać sieć obszarów o przeciwnych kierunkach namagnesowania w sąsiednich komórkach np. sieci kwadratowej lub heksagonalnej

maciej urbanial

Η

Eksperyment:

-podłoże z warstwą magnetyczną pokrywane
jest warstwą polimeru o grubości 1.6 µm –
ustala to odległość kulek
superparamagnetycznych od struktury
domenowej

-kulki superparamagnetyczne: Dynabeads M-270 (podatność efektywna – 0.6); funkcjonalizowane -COOH

Potencjał magnetyczny* małej** kulki superparamagnetycznej 500 nm na kwadratową siecią domen o boku a = 4 µm i grubości 1 nm

maciej urbaniak

magnetycznego!

Bez zewnętrznego pola

 $E_{SPB}(\vec{r}) = -\frac{1}{2}\mu_0 \chi H^2$

* potencjał w polu magnetycznym

Potencjał magnetyczny małej kulki superparamagnetycznej 500 nm na kwadratową siecią domen o boku a = 4 µm i grubości 1 nm

Pole zewnętrzne: (0.5,0.5,0.5) mT

$$\nabla (\vec{H}_{podl} + \vec{H}_{zew})^2 = \nabla \vec{H}_{podl}^2 + 2\nabla (\vec{H}_{podl} \cdot \vec{H}_{zew})^2$$

pogłębienie minimum

Energia magnetostatyczna superparamagnetycznej kulki w polu ściany domenowej Néela w warstwie z oddziaływaniem DMI

Eksperyment:

- prowadzony w środowisku wodnym lepkość
- pod wpływem zewnętrznego pola magnetycznego
 (4 kA/m), o wartości mniejszej niż pole koercji
 podłoża, kulki superparamagnetyczne tworzą
 przypadkowej długości liniowe kompleksy
 (pręty/łańcuchy)
- szklany pręt z końcówką o średnicy kilku mikrometrów, przymocowany do mikromanipulatora, wykorzystywany jest do dostosowania długości łańcucha i położenia kulek do konfiguracji startowej podczas gdy pole zewnętrzne leży w płaszczyźnie równikowej

Fig. 1 Schematic of the colloidal transport.

M. Mirzaee-Kakhki et al., NATURE COMMUNICATIONS, 11:4670 (2020)

przestrzeń kontrolna, C_p – reprezentuje możliwe kierunki zewnętrznego pola magnetyczne<u>go</u>

pole zewnętrzne zmienia się adiabatycznie w funkcji czasu tworząc w C_p zamknięte pętle

Fig. 1 Schematic of the colloidal transport.

M. Mirzaee-Kakhki et al., NATURE COMMUNICATIONS, 11:4670 (2020)

przestrzeń kontrolna, C_p – reprezentuje możliwe kierunki zewnętrznego pola magnetycznego

pole zewnętrzne zmienia się adiabatycznie w funkcji czasu tworząc w C_p zamknięte pętle

Jeśli pętla obejmuje specjalne kierunki (żółte i różowe punkty równikowe) to łańcuchy przesuwają się o jeden wektor sieciowy po wykonaniu pełnej pętli

M. Mirzaee-Kakhki et al., NATURE COMMUNICATIONS, 11:4670 (2020)

Eksperymentalne trajektorie łańcuchów sterowanych wielokierunkowymi (polydirectional) pętlami w przestrzeni C_p

Teoretycznie i pod warunkiem, że nie więcej niż jeden z łańcuchów jest krótszy od wektora sieciowego, zawsze można znaleźć wielokierukową pętlę w przestrzeni C_p, która transportuje niezależnie łańcuchy o różnej długości.

M. Mirzaee-Kakhki et al., NATURE COMMUNICATIONS, 11:4670 (2020)

Fig. 2 Experimental trajectories of bipeds driven by parallel polydirectional loops.

Eksperymentalne trajektorie łańcuchów sterowanych wielokierunkowymi (polydirectional) pętlami w przestrzeni C_p

Teoretycznie i pod warunkiem, że nie więcej niż jeden z łańcuchów jest krótszy od wektora sieciowego, zawsze można znaleźć wielokierukową pętlę w przestrzeni C_p, która transportuje niezależnie łańcuchy o różnej długości.

Programowanie ruchu łańcuchów

M. Mirzaee-Kakhki et al., NATURE COMMUNICATIONS, 11:4670 (2020)

Opracowano program optymalizujący pętle sterujące, dla zadanej stabilności, pod względem liczby poleceń dla danego zbioru długości łańcuchów I przesunięć.

Zwykle zwiększenie stabilności (robustness) prowadzi do zmniejszenia zwięzłości (compactness) sekwencji poleceń.

Topologicznie chroniona magnetoforeza liniowych kompleksów superparamagnetycznych na periodycznych potencjałach magnetycznych na bazie cienkich warstw Co

WNIOSKI

- użycie równoległych wielokierunkowych pętli pola magnetycznego do sterowania ruchem kompleksów koloidalnych może znaleźć zastosowania w scalonych układach analitycznych, w automatycznej kontroli przebiegu procesów chemicznych etc.
- topologicznia ochrona dotyczy wpływu małych zaburzeń kształtu pętli modulacji, zmian kształtu cząstek koloidalnych i odstępstw strukturyzowanego układu domen od periodyczności na wypadkowy wektor przesunięcia dla pełnej pętli modulacji — jest to istotne dla praktycznych zastosowań magnetoforezy.
- topologicznie chroniony transport możliwy jest również dla nieadiabatycznych zmian pola (f \approx 1 Hz)

maciej urbaniak

Seminarium Sprawozdawcze IFM PAN 2020