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MAGNETISM IN LOW-DIMENSIONAL CUPRATES

K.-H. MULLER
IFW Dresden, POB 270016, D-01171 Dresden, Germany

Abstract: The interest in quasi low-dimensional cuprates originated from the discovery of high-T,
superconductors typically consisting of intermediate valence copper oxide planes. Usually the mag-
netism of the cuprates originates from the d-electrons of copper in the oxidation state Cu" . In an ionic
approximation the Cu" species are described by Cu™. 1Its paramagnetic moment is well approximated by
the spin-only value of 1.73 Bohr magnetons. A certain overlap of wave functions results in exchange
interactions of the magnetic moments. The dominating type of interaction is superexchange via oxygen
anions. In a more realistic description covalence or, more generally, overlapping electron wave functions
combined with electron correlation have to be taken into account. In most cases the Cu'" cuprates contain
quasi two-dimensional or quasi one-dimensional networks of CuO, plaquettes and they mostly behave
like quantum spin -1/2 antiferromagnets of low dimensionality (D = 1 or D = 2) whose macroscopic
magnetic behaviour is governed by antiferromagnetic long-range order or spin singlet ground states.
Weak interactions between low dimensional magnetic subsystems may lead to dimensionality crossover
and quantum critical phenomena.

1. INTRODUCTION

The discovery of high-T, superconductivity in the La-Ba-Cu-O system by Bednorz and
Miiller [1] led to a world wide effort to explore compounds containing copper oxide layers
and related oxychlorides because they may become superconductors when doped. Figure 1
shows the crystal structure of (Ba, La)CuQO, characterized by a network of corner-sharing
CuO, plaquettes. Regarding the large spacing between the CuO, planes in the high-T,
cuprates and their electronic structure they can be considered as consisting of weakly
interacting two-dimensional subsystems [2, 3]. Experimental data on the structural, electronic
and magnetic properties of La,_ Sr,CuO, (which is similar to La,_,BaCuO,) are sum-
marized in the phase diagram of Fig. 2. Since La is expected to be always in the oxidation
state (+3) and O in (-2) the electronic configuration of Cu in the undoped compound
La,CuO, is 3d° with one hole per copper site. In a naive point of view such a material is
expected to be a metal, but in reality it is an antiferromagnetic insulator because electron
correlations prevent the charge fluctuations required for metallic conduction. Antiferro-
magnetic insulators of this type are called Mott-Hubbard insulators [2]. It is generally
accepted that strong electron correlation has to be taken into account to understand phase
diagrams as that of Fig. 2. And it has been even suggested that the correlations are responsible
for the electron attractions which are required to obtain the high superconducting transition
temperatures observed in the cuprate superconductors [4]. Figure 2 shows that, in particular at
zero temperature, with increasing doping rate x various magnetic and electronic states occur
which are separated by quantum critical points: Néel-type antiferromagnetism, spin glass,
superconductivity and normal-state metallic behaviour. Additionally a quantum critical point
is supposed to lie hidden within the superconducting range of x, separating a non-Landau-
Fermi liquid in the underdoped range (small x) from a Landau-Fermi liquid [5]. Special
characteristics of the underdoped range are pseudogap behaviour in the normal state and a cer-
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tain type of electronic phase separation [6]. l.e. above the superconducting transition
temperature the added holes tend to segregate into charge stripes which act like domain walls
between antiferromagnetic regions. Those stripes have been observed by neutron scattering
[7]. In La,CuO, doped with Sr or Ba the added holes go predominantly into oxygen 2p
dominated states because otherwise the Cu sites would be doubly occupied by holes [2, 8].
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Fig. 1. Crystal structure of the high-7,. cuprate Fig. 2. Magnetic/electronic/structural com-

superconductor (La, Ba),CuO, [I] and the nearly position-temperature phase diagram for
planar CuO, network consisting of corner-sharing La, . Sr,CuQ, (after [3]).
CuOy,-plaquettes. SG and T, are the space group and

the achieved superconducting transition temperature,

respectively

A similar phase diagram as that in Fig. 2, with antiferromagnetic and superconducting ground
states, has been realized in Nd, .Ce,CuO, i.e. by adding electrons instead of holes. To
analyse the properties of cuprate superconductors the so called t-J-model, or some extended
versions of it have successfully been used [2, 5]. This model has a simple chemical inter-
pretation. The parent stoichiometric insulators have an oxidation state Cu" corresponding to
an § = 1/2 ion, and the magnetic interactions are well described by a simple next-neighbor
Heisenberg model with a large value of the exhange interaction, J/k,; ~ 1500 K (see Sec-
tion 2.2 below). Hole doping introduces the oxidation state Cu'" in the low spin configuration
S = 0 (see Section 2.3). The Cu" and Cu" can interchange places with a hopping matrix
element, ¢, that describes the electron transfer. The -/ model is the simplest model that
incorporates these two key processes and can be used to handle concepts as the quantum spin
liquid, resonating valence bond state, Zhang-Rice singlet etc [4, 5]. For details of the very
interesting and extensively investigated field of electronic and magnetic properties of
the doped cuprate superconductors the reader is referred to Refs. [1] to [12].

In this study we will restrict ourselves to magnetic properties of some nominally integer
valence cuprates and oxychlorides. Even under this restriction a large variety of phenomena of
copper magnetism has been reported and many problems are still unsolved. To start with
the consideration of single Cu ions is suggested by the mentioned above fact that, due to
strong electron correlation, a description by simple bands of independent electrons will
definitely fail. The copper ions experience the influence of their anionic (or more or less
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covalent) anisotropic environment in the solid. Hence, even in this most simple approximation
the magnetic properties will be anisotropic. In a more careful analysis the interaction between
the magnetic ions in the solid have to be considered. Different types of magnetic anisotropy
have to be taken into account and to be distinguished from the anisotropy connected with
the (quasi) low dimensionality. The next step is to find a relevant spin Hamiltonian in order to
describe and to predict the magnetic properties of the considered material. In the approxi-
mations needed for this purpose, the (quasi) dimensionality of the system has carefully to be
treated because it is known to have crucial influence on the magnetic properties.

2. IONIC COMPOUNDS AS A SIMPLIFIED PICTURE

As already discussed in the previous section, Mott-Hubbard insulators are expected to be
well described by electrons being localized on atoms or ions [13]. We will first consider
the electronic and magnetic properties of free ions. If a magnetic field H is applied to an ion
its quantum mechanical states will be modified resulting in small negative or positive contri-
butions to its magnetic moment, known as diamagnetism or van Vleck paramagnetism,
respectively. Additionally, if the atomic shells of the ions are only partially filled by electrons
a magnetic moment may occur which does not vanish for /# - 0. This magnetic moment is
closely related to the angular momentum of the ion which is a good quantum number because
the ion is a rotationally symmetric object. Strictly speaking there are three types of angular
momentum quantum numbers: total spin, S, total orbital momentum, L, and total momentum,
J, the values of which are well determined by three Hund's rules [13]. As indicated in Table I
the first two Hund's rules that determine S and L are a result of the intraatomic electron
correlation (due to Coulomb repulsion) whereas the third rule is based on spin-orbit
interaction. In the solid cuprate structure the copper ions experience an interaction with their
anionic environment characterized by (i) electrostatic interactions (crystal fields) and (ii)
overlap of wave functions resulting in (indirect) exchange interaction with neighbor Cu ions
and covalence effects based on hybridization of various electronic configurations [14].
Covalency manifests itself by remarkable deviations of the oxidation state (or valence) here
represented by a Roman number, for example Cu", from the real charge represented by arabic
superscripts, for example Cu®", where by definition the oxygen in cuprates has the oxidation
state O ! [15]. As a result of the covalence effects the cuprates are charge transfer insulators
rather than conventional Mott-Hubbard insulators i.e. the gap separating the Hubbard
subbands is of the order of the Cu-to-O hole transfer energy (&, - &) instead of the Coulomb
interaction strength at the copper sites, U, [14]. Due to the interaction effects the second and
third Hund's rules will be violated and in particular the orbital angular momentum L is said to
be quenched i.e. it disappears because the interaction of the copper ion with the solid strongly
violates rotational symmetry. On the other hand, the first Hund's rule still fairly works in
certain compounds i.e. the total spin remains a good quantum number (exceptions will be
discussed in Section 2.3) and the mentioned above interactions of the Cu ions result in
anisotropic properties of the spin based magnetization as will be discussed in Section 2.2. For
well understood reasons, Cu' cuprates are usually characterized by a two-fold coordination i.e.
they contain CuO, dumbbells (see Fig. 3), whereas the typical topological unit of Cu"
cuprates is a planar square CuO, plaquette forming one or two dimensional networks and, as
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Table I. Hunds' rules determining the total spin S, orbital angular momentum L and the total angular
momentum J, applied to copper ions: 1. .S ~ maximum (Coulomb repulsion); 2. L -~ maximum (Coulomb
repulsion); 3. J= L + S (spin-orbit coupling)

lon Sing}e clec.tron s L J
configurations
Cu’ 34" 0 0 0
Cu® 3d’ 12 2 512
Cu’ 3d® 1 3 4
(a) LaCu'0, (b) LaCu"0,5 (¢) LaCu™0,4
D=0 D=1 D=3

Fig. 3. Change of valence and crystal structure
by oxidation. D is the (quasi) dimensionality
of the lattice structure. (a) LaCuO, (SG: R3 m)
— isolated O-Cu-O dumbbells in the dela-
fossite structure. (b) La,Cu,Os5 (SG: Pbam) —
two-leg ladder with Cu'. (c) LaCuO; (SG:
R3c) is a distorted perovskite

shown in Fig. 3, cu cuprates can also crystallize in three-dimensional structures [15-17].
The well defined coordination configurations (with low coordination numbers) also indicate
the high degree of covalency in the crystal binding of cuprates.

2.1 Cu' COMPOUNDS

The CuO, dumbbells of Fig. 3a with a copper site that is linearly coordinated by two
oxygen ions is typical for cu' cuprates. In some cases the dumbbells are found to be isolated
as in LaCuO, with delafossite type structures (see Fig. 3a), but the dumbbells can also be
connected forming rings as in KCuO or chains as in CsCuO, or they build two-dimensional
networks as for example in K;CusO, [17]. These dumbbell structures can neither be described
by ionic crystal binding nor by pure sp bonding (assuming a completely filled Cu 3d shell).
Rather than s-d hybridization has to be taken into account [18]. On the other hand, concerning
their magnetic and electrical-transport properties the cu' cuprates behave as expected in the
simple ionic picture: they are diamagnetic insulators [17]. Detailed data on the magnetic and
electronic properties of the Cu' cuprates are rare in literature because these compounds are
considered to be much less interesting than cu" compounds which may become super-
conducting if doped.

As can be seen in Fig. 3 the formal oxidation state of LaCuO, can be increased from I to 11
or III by increasing the oxygen stoichiometry from 2 to 2.5 or 3.
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2.2 Cu"' COMPOUNDS

The magnetic properties of cuprates with two-valent copper, Cu", have been extensively
investigated because among them are the undoped parent compounds of high-7,. super-
conductors containing two-dimensional networks of corner-shared CuQ, plaquettes as shown
in Fig. 1. Most of these compounds are insulators and the ionic picture describing cu" as
a § = 1/2 ion (see Table I) works rather well. The contribution of such an ion to the mag-
netization is

pu=gSuy= 1uy,

where g = 2 is the g factor or Landé factor of an ion with vanishing (i.e. totally quenched)
orbital momentum L. The contribution of the same ion to Curie paramagnetism is

H, = gYS(S+ Nyuy= V73, (2)

The difference between g and ,, is due to quantum effects and it has its maximally achievable
value for S = 1/2. In cuprates the Cu™ magnetic moments dominantly interact with their next
Cu neighbors via indirect exchange interaction through oxygen. Therefore these materials are
often considered as ideal model systems for spin 1/2 quantum magnetism that can well be
described by Heisenberg type Hamiltonians as

H=JY S,

L)

(3)

where (i, j) is over nearest-neighbor bonds and AYRY is the scalar product of the quantum
operators of spin 1/2 vectors. In the typical Cu-O-Cu straight bonds of corner-shared
plaquettes (as in Fig. 1) the coupling is strongly antiferromagnetic (J/k; = 1500 K)) and resuits

¢y QO &, O

from hybridization of the oxygen 2p, orbitals with the neighboring 34 Cu orbitals (super-
exchange). In the large family of Cu® cuprates there are also cases where the indirect
exchange through oxygen is not along straight lines [17]. Examples are compounds with edge-
sharing CuQ, plaquettes as in Li»CuO, (Fig. 4) or compounds with more or less isolated
plaquettes as in La,BaCuOs (Fig. 5). In these cases the strength of the exchange interaction is
reduced and ./ may even be negative (ferromagnetic coupling) [22-25].

™ b
)
b O Fig. 4. Edge-sharing CuO, plaquettes forming
® ® l chains in Li,CuQ, [19, 20]
“Q
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Magnretic order and ground states in quasi low-dimensional Cu~ cuprates

All materials including cuprates are three-dimensional magnetic systems. However, as
discussed above, the strength of exchange interaction between the magnetic moments in Cu”
cuprates strongly depends on the local topology and the angle of Cu-O-Cu bonds. Therefore
cu cuprates usually consist of relatively weakly exchange-coupled subsystems with a dimen-
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sionality D lower than 3 where the exchange coupling within the subsystem is relatively
strong. To some approximation such materials can be considered as being of (quasi low)
dimensionality D [26]. In this sense the compounds of Figs. 1 are of D = 2, those of Figs. 4
and 6 of D = 1 and that of Fig. 5 of D = 0. Many rigorous theoretical results on magnetic
properties of low-dimensional Cu'" cuprates have been derived by analysing the spin 1/2
Hamiltonian (3). For J < 0 and arbitrary dimensionality D =0, 1, 2 or 3 the ground state can
easily be shown to be ferromagnetic with totally aligned individual moments, each with its
maximum value of 1 Bohr magneton. The direction of the collective magnetization can be
fixed by a very small external field or a weak magnetic anisotropy. With increasing tem-
perature, the magnetization decreases and vanishes at the Curie temperature 7,.. However,
a finite 7., (in the order of U/Vk,) only exists for D = 3, whereas T, is zero for D <3 i.e. at
finite temperatures ferromagnetic order cannot exist in finite clusters, linear chains or square
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Fig. 5. The ferromagnet La,BaCuOs (space
group P4/mbm). (a) The demagnetization curves
clearly indicate ferromagnetism, where the tetra-
gonal c-axis is the magnetically easy direction.
Curie temperature 7, =~ 6.5 K [21]. (b) CuO,

plaquettes (parallel to the tetragonal c-axis) as

Fig. 6. The D = 1 (chain) compound Sr,CuO;.
(a) Temperature dependence of the intensity of
the (0, 1/2, 1/2) neutron diffraction peak, which
is proportional to the staggered magnetization
[27]. (b) Corner-sharing CuO, plaquettes along
the b axis (SG: Immm)

typical for cu" cuprates

lattices [28]. In the case of antiferromagnetic coupling (/> 0) in Eq. (3) the situation is more
complicated. Now, even at T = 0 finite clusters as well as linear chains are in a singlet state
i.e. the Cu" sites do not exhibit any individual magnetic moments. The difference between
the two systems is that in finite clusters (D = 0) the magnetic excitations are separated from
the singlet ground state by a finite gap [29] called spin gap whereas for D = 1 there is no spin
gap [30]. On the other hand for D = 3 [31] as well as the square lattice (D = 2) [32] a Néel
type antiferromagnetic order with a staggered magnetization on the individual Cu"" sites has
been theoretically shown to exist in the quantum mechanical ground state. Due to quantum
fluctuations the individual staggered moment per Cu"' site in the square lattice (D = 2) is about
0.6 uy instead of the full value of Eq. (1) [33]. Because the Néel type order violates
the rotational symmetry of the Hamiltonian (3) there must exist zero-energy Goldstone modes
(spin waves) and consequently there is no spin gap in that case [34]. For the simplest D = 0
cluster, namely a dimer of two interacting spin 1/2 moments, the spin gap and the sus-
ceptibility y can easily be calculated [35]. Upon cooling the antiferromagnetically coupled
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dimers from a high temperature, y will increase similar as in a Curie paramagnet. On the other
hand, the spin gap causes y = 0 at 7= 0. Consequently, the temperature dependence of y has
a maximum as shown in Fig. 7. The maximum in (T is a typical feature of low-dimensional
Heisenberg antiferromagnets independent of the existence or non-existence of a spin gap (see
Figs. 7 and 8). Two-leg spin ladders (as that in Fig. 3b), or more generally even-number leg
ladders, show a spin gap and an exponential decay of spin-spin correlations. Their coherent
singlet ground state is considered to be a realization of the quantum spin liquid or resonating
valence bond state proposed by Anderson [4]. It has been shown that the spin gap opens
immediately upon introduction of non-zero interchain coupling J' (see Fig. 7)) within the lad-
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Fig. 7. Temperature dependence of the susceptibility of spin 1/2 Hamiltonians (3) [3]. (a) Dimer
(D= 0). (b) Dimer (D = 0), chain (D= 1) and a two-leg spin ladder
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ders [36]. On the other hand, odd-number leg ladders (including uncoupled chains as that of
Fig. 6) have a slow decay of spin-spin correlations and no spin gap [37].

. . . iy o 1l
Dimensionality crossover and quantum critical points in Cu" cuprates

Contrary to the discussed above theoretical predictions concerning the magnetic properties
of low-dimensional magnetic systems, many quasi-low-dimensional Cu'" cuprates show long-
range magnetic order and magnetic phase transitions at finite temperatures (as e.g. shown in
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Figs. 2, 5 and 6). It is generally accepted that the reason for these observations is
the (relatively small) exchange interaction between cu magnetic moments of the nearly
separated low-dimensional subsystems. For quasi 2D Cul cuprates (as the undoped parent
compounds of typical high-7,. superconductors (see Figs. 1 and 2)) Soukoulis et al. derived
the formula

4 rJ

ST T (2J17) 4)
using low-temperature spin wave theory [38]. In Eq. (4) Ty is the Néel temperature, J is
the main antiferromagnetic exchange interaction (within the plaquettes of Fig. 1) and J| is
the interplanar antiferromagnetic exchange interaction. This approximation works rather well
for rhombohedral La,CuO, where the typical data are 7, = 300 K, kz/ = 1500 K and
J N = 10°7° [3]. Thus at high enough temperature the influence of J, is negligible and
the quasi-low-dimensional materials behave as really low-dimensional ones. For example,
the layered Cu'" cuprates will show a temperature dependence of susceptibility y as shown in
Fig. 8 which however is difficult to be observed because the maximum of y and the Curie-
type behavior will occur at temperatures as high as or even higher than 1500 K [3]. At suf-
ficiently low temperatures the influence of J, results in 3D magnetic ordering as presented in
Fig. 2 and described by Eq. (4). Also a crossover from decreasing y with decreasing
temperature (as expected from Fig. 8 for r <t ) to a special behavior of »(7) connected with
3D ordering has been observed for La,CuO, [39]. Such a dimensionality crossover upon

cooling from lower to higher dimensionality has often been observed in quasi-low-dimen-
sional materials [26].

Fig. 9. Néel temperature T of interacting two-leg i
ladders. J, is the strength of the coupling between
the ladders, J the coupling strength along the legs
and along the rungs of the ladders. QCP marks
the quantum critical pointatJ/, = 0.12 J [42]
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A variation of the exchange coupling J, between low-dimensional subsystems can result
in further phenomena that have to be distinguished from the dimensionality crossover
discussed above. In the following this will be discussed for the two-leg ladder material
La,Cu,O5 (see Fig. 3b) [40]. As a good approximation, in that case, the coupling along
the rungs of the ladder (J* in Fig. 7b) can be considered to be equal to the coupling J along
the legs [41]. Although the single ladder clearly has dimensionality D = 1 its behavior
remarkably deviates from that of a single chain i.e. it is a spin liquid with a spin gap resulting
in zero susceptibility at zero temperature (see Fig. 7b). If now an interaction J, (of the same
strength as J) is switched on the system will be a 3D antiferromagnet with staggered magnetic
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moments at the Cu' sites and a gapless spin-wave spectrum. Thus an interesting question is
how the system transforms between the magnetically ordered state and the spin-liquid state if
J. is varied between 0 and J. It was shown by quantum Monte Carlo simulations that the spin
gap opens below a critical interladder coupling J, = 0.11J [41]. This value can be considered
as a quantum critical point [32] characterizing the quantum phase transition between
the ordered state and the spin liquid. Using and generalizing the bond-operator mean-field
theory the Néel temperature of the system could be calculated for the whole range 0 < J, < J
(see Fig. 9) and a critical value J /J = 0.12 was found [42]. At intermediate temperatures the
system crosses over to the 1D decoupled-ladders regime. However, for interladder coupling J,
below its critical value, 0.12J no crossover to 3D-type ordering does occur at low tem-
peratures.

Magnetic anisotropy in C u cuprates

In condensed matter a Cu'" site has always a discrete environment of neighbors, i.e. anions
or cations etc., which represent a local anisotropy. In crystalline solids the local anisotropy
adds up to the macroscopic crystalline anisotropy which is manifested by anisotropic physical
properties of the considered material. In the previous subsection we discussed the directional
dependence of the strength of exchange interactions, resulting in quasi-low dimensionality
which is a special type of anisotropy. Note that low dimensionality has to be distinguished
from real magnetic anisotropy which is the subject of this subsection. For example,
the Heisenberg Hamiltonian (3) is isotropic i.e. rotationally symmetric also for chains (D = 1)
or square lattices (D = 2). Magnetic anisotropy is the dependence of magnetic properties on
the direction (with respect to the crystal axes). A typical example is the directional depen-
dence of demagnetization curves shown in Fig. 5.

As discussed above the magnetic moment on a Cu"" site is based on the copper spin and
therefore the anisotropy of the solid can be transmitted to the magnetization only by spin-orbit
(LS) interaction or by magnetic dipolar interaction which however can be neglected in most
cases. Thus in any approach to magnetic anisotropy in cu! cuprates LS coupling has to be ex-
plicitly taken into account. Lets first consider the magnetic anisotropy on a single Cu'" site.
Usually crystalline-electric-field (CEF) splitting in cuprates is large compared to both kT
(temperature) and LS coupling. Therefore the orbitally non-degenerated CEF ground state
with quenched orbital angular momentum and two-fold spin degeneracy is a good zero order
approximation. The LS coupling (of strength 1) and the Zeman energy can be considered as
a perturbation

H =1LS + u,H(2S + L) (5)

Collecting the terms proportional to the field H from the result of first and second order
perturbation theory results in an effective Zeman energy
Heff = Z 2:UHH;1( 5;: v ’ZA,u v) SV

(6)

nv

with
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where £, and [n) are the CEF energy levels and eigenfunctions, respectively, and L, are
the components of the orbital angular momentum operator. Taking into account Eq. (6) the g
factor (1) has to be replaced by the g tensor

gyl/: 2(6 v /ZA;H/)' (8)

u
For Cu' in elongated tetragonal surroundings with C,, symmetry the second term in Eq. (8) is
positive and typical values of g, , are g.. = 2.20 and g,, = g,, = 2.08 [35]. The increase of g
(> 2) is due to an induced orbital momentum which arises from mixing with higher-energy
orbital states due to the LS coupling. The g tensor (8) represents the magnetic anisotropy of
a single cu magnetic moment. The perturbation term proportional to A> contributes to
magnetic anisotropy only for § > 1/2. Therefore it is not effective for Cu'' moments.

A further type of magnetic anisotropy in cu cuprates is superexchange modified by LS
coupling, which is usually much more efficient than the anisotropy of g. In Hamiltonians as
that in Eq. (3) the spin is present only in order to fulfill the Pauli principle. Therefore
Hamiltonians describing pure exchange interactions are invariant under rotations in spin space
[29]. Taking the LS coupling on two neighboring cu' sites, together with the isotropic
superexchange between them, as a perturbation to the same non-perturbed states as considered
above for the calculation of the g tensor, perturbation theory results in the following spin
Hamiltonian that has to be added to the isotropic Hamiltonian (3)

H, =t Y. d,(S,xS)+ a, JY S;S )
(i.)) (i.j)

where a3, ~4 and o, ~A%and d,, are vectors depending on the bond (i, j) and the symmetry of
its environment [12, 13, 43]. The first term in Eq. (9), the Dzyaloshinsky-Moriya type anti-
symmetric exchange interaction, was introduced by Dzyaloshinsky [44]. The second term in
Eq. (9) may result in a Kosterlitz-Thouless phase transition even if the (i, j) in Egs. (3) and (9)
run over a 2D square lattice [45]. The 2D low-temperature Kosterlitz-Thouless phase does not
carry a staggered magnetization. However it is generally accepted that the xy term in Eq. (9)
together with the interlayer coupling @, = J /J (see previous subsection) results in a 3D xy
transition which is assumed to assist the development of Néel type magnetic order in
tetragonal layered cu cuprates as Sr,CuO,Cl, where @, << &, [46, 47]. This approach
results in the following expression for the Néel temperature of layered cuprates

- 0.3 mkyJ

T, = 10
Y n@a,/[037n(4a,/m)]) e

with g =4 e, + 2, [47, 12].

Weak ferromagnetism in Ba,Cu;0 ,Cl,

The lattice structure Ba,Cu;0,Cl, contains two Cu sites, Cu, and Cuy (see Fig. 10a).
The Cu, ions form the typical, for Cu" compounds, planar Cu,0O, plaquettes which build
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Fig. 10. Crystal structure of the cu"
compound Ba,Cu;0,Cl, [48]. (a) unit cell
(space group: [4/mmm). (b) planar net-
work of corner-sharing Cu,O, plaquettes
and isolated CuzO, plaquettes. The CuzO,
plaquettes share their edges with those of
the Cu,0O, plaquettes
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Fig. 1. (a) Magnetization vs. field curves for Ba,Cu;0,Cl,. For applied fields /7 parallel to [110] or
[100] a small residual magnetization M, is observed. For H parallel to [100] a kink is found at
a threshold field H,. Above H, the magnetization curves for [110] and [100] are parallel to each other.
(b) Temperature dependence of M, [51]

a planar corner-sharing network (Fig. 10b). The Cuy ions fill half of the remaining empty
oxygen squares. Therefore, the magnetic behavior of this compound is expected to be that of
a 2D quantum Heisenberg antiferromagnet. For all Cu, sites the bond angle Cu,-O-Cu, is
180°, whereas the angle for the Cu,-O-Cuy bonds is 90° and the Cuy-Cuy interaction is
expected to be very small. Two antiferromagnetic ordering temperatures are observed: At
Ty4 = 337 K the Cu, ions order antiferromagentically, whereas the Cuy ions order at a quite
lower temperature Ty = 33 K [49-51]. As the magnetization versus field curves for applied
fields parallel to the [001] direction pass the origin (see Fig. 11a), the easy direction of
the staggered magnetization is in the (@, b) plane. The finite magnetization, M, measured for
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H - 0 in both directions in the basal plane, [100] and [110], indicates the presence of a small
spontaneous magnetization [50-52]. Furthermore, some metamagnetic behavior i.e. a small
kink of the M(H) curve at a threshold field H, is found for H|| [100]. At higher fields
the demagnetization curve measured for H|| [100] (cf. Fig. 11a) approaches a straight line
passing through the origin. The temperature dependence of the residual magnetization M,
measured for H || [100] and H || [110], is given in Fig. 11b. Typical hysteresis loops measured
for H || [100] are presented in Fig. 12. Above the lower Néel temperature 7,5 the coercive
field H, is more than one order of magnitude smaller than below. Between T'yg and Ty, poH
is only about 0.5 mT, for both directions [110] and [100], and does not much depend on
temperature [S1].

—_ - T T
2 0.01 Ba,Cu;0,4Cl, 35 5-0"'0"'0-
< H 11 11001 W
< 1 20K ]
- Hc i

Fig. 12. Above Ty a residual net mag- \l i

netization but (nearly) no hysteresis is E) Y

observed. Below 7,z where the Cuy © %

moments are also antiferromagnetically £ f

ordered, a hysteresis is found as typical 2

for ferromagnets [51] g g Tna= 337K
= -0.01f+ -?--‘-0-" T = SSK -

-50 0 50

Magnetic field (mT)

An anisotropic pseudodipolar interaction between the antiferromagnetically ordered Cu,
and the paramagnetic Cug moments has been successfully proposed [52, 53] to explain
the presence of a spontaneous magnetization and the metamagnetic behavior of Sr,Cu;0,Cl,
which is very similar to that of Ba,Cu;0,Cl,. A quasi-dipolar field caused by the ordered Cu,
moments is assumed to induce a net moment in the Cuy subsystem.

Spin flop transition in Ba;Cu,0 Cl,

The structure of Ba;Cu,0,4Cl, is orthorhombic (space group Pmma; see Fig. 13). The two
Cu sites, Cuy and Cuy, within the unit cell and the surrounding oxygen ions form nearly
regular squares. However, these plaquettes are edge-sharing and build folded chains. The axes
of the chains are parallel to the orthorhombic a-axis. The field dependence of the mag-
netization, M, measured along the a-axis is shown in Fig. 14a. Below T, = 20 K these M(H)
curves show a metamagnetic transition i.e. a strong upward curvature in a limited range of
the magnetic field H. At a threshold field, H, of about 2.6 T the M vs. H curves measured at
low temperatures jump between two straight lines. Above the jump, the slope is considerable
larger than below. Whereas M, and thereby the susceptibility jy, increases nearly linearly with
increasing temperature at fields below H, and below T, above H, only a weak dependence on
temperature is observed. No such jump of the magnetization has been found for H |6 or ¢ (cf.
Fig. 14b). These observations indicate a spin-flop transition [56] in the case ﬁHa ie.
a transition from a collinear antiferromagnetic structure with localized moments aligned along
the easy a-axis to a configuration perpendicular to the field. From K, = H,z(;(l -2 [13]
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Fig. 13. Crystal structure of the folded-chain
compound Ba;Cu,0,Cl, (SG Pmma) with
two types of Cu'-sites. Cuy and Cuy [54]

N w

Magnetization (Am?kg)

Fig. 14. (a) For fields H applied parallel to the
a-axis, below the Néel temperature Ty = 20 K:
spin flop transition characterized by a threshold

53 field H,. Above T: paramagnetic behavior. (b)
E‘D For H parallel to the b — or c-axis: no spin-flop
&~ [51,55]
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with the susceptibilities measured in fields parallel () and perpendicular (y,) to the eas;;
a-axis the corresponding anisotropy constant is estimated to be K; = 1.1:10* VAs/m
(7= 1.7 K). Above the spin-flop transition the moments progressively rotate towards the field
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direction. In that field range the increase of M is mainly determined by exchange interaction
and therefore only weakly depends on temperature. The spin structure of Ba;Cu,0,Cl, has
not yet been determined experimentally. From symmetry arguments it follows that (i) the mo-
ments of crystallographically equivalent Cu moments are parallel and (ii) the moments of
the non-equivalent sites are antiparallel. Thus, despite the presence of well separated one-
dimensional CuO, chains in this compound it behaves as a classical 3D antiferromagnet. This
can be explained by its electronic structure and its influence on the magnetic properties [57,
58].

2.3 cu™ compounds

As shown in Fig. 15 the ionic compound Cs;CuF contains isolated Cu " F4 octahedra and
it is an ideal Curie paramagnet with a paramagnetic moment of 3 Bohr magnetons per copper
site [59]. This is in good agreement with the ionic approximation which predicts § = 1 (see
Table I) and y, = 2.8 uy (see Eq. (2)) for cu jonic compounds.

I

& | Cs;CuF,
200
£ n
(8]
'S 100
E |
g | 1 | 1
0 100 200
Temperature [K]
(a) (b)

Fig. 15. (a) Local environment of cu™ in Cs;CuFg: The Cu®* ion is surrounded by an ideal

octahedron of 6 F~ ions. These octahedrons are isolated in the crystal structure, i.e. Cs;CuF4 can be
considered as quasi zero dimensional. (b) The inverse-susceptibility vs. temperature curve shows that
Cs;CuFg is an ideal Curie paramagnet [59]

A net oxidation state Cu'" can also be realized in cuprates. But, so far, these compounds
are not intensely investigated because in the high-T7,, superconductor scene they are considered
as overdoped Cu'" cuprates which do not show superconductivity. A common feature of
the Cu'™ cuprates is that they do not have a magnetic moment corresponding to S = 1. Various
mechanisms, in principle, could be responsible for the Cu"™ magnetic moment to disappear.
The first mechanism is zero-field splitting resulting in the S_ = 0 ground state which can occur
e.g. in tetragonal crystalline electric fields. For temperatures small compared to the energy
difference of the S. = 0 and the S. = 1 level, an § = 1 system will behave like an S = 0
(singlet) system [35]. On the other hand, low-spin states occur if the crystal-field splitting of
the single-electron levels is strong compared to the intraatomic interaction normally ensuring
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the 1* Hund's rule. A subset of lower crystal-field levels will be filled violating 1% Hund' rule
and, consequently, the total spin vanishes [60]. In recent years a further concept has been
generally accepted for doped cuprates which explicitly takes into account the observed
presence of a hole near the oxygen sites and the high degree of covalency in these compounds.
According to this model a hole on the copper site forms a singlet, called Zhang-Rice singlet
[61], with a second hole being located on (and shared by) the surrounding oxygen ions.
Among the Cu'" cuprates diamagnetic insulators, as e.g. LiCuO, [62], as well as metals with
Pauli paramagnetism as e.g. LaCuO; [63] have been found. The crystal structure of LaCuOs is
shown in Fig. 3c.

3. SUMMARY AND CONCLUSIONS

This study was restricted to copper magnetism in integer-valence cuprates (and copper
oxyhalogenides). A natural and important extension would be to consider also rare-earth
containing cuprates (where La is substituted by 4/ elements) and mixed-valence compounds
containing strongly correlated itinerant d electrons. Even under the mentioned above
limitation the cuprates show a large variety of magnetic phenomena originating from
the d-electrons of copper in the oxidation states Cu', Cu" or Cu™. The ionic approximation for
the Cu species, describing oxidation states by charge states works fairly well. According to
this approximation the ground state of Cu” compounds has no magnetic moment and they
exhibit diamagnetism or van Vleck paramagnetism. The orbital angular momentum of
cu' and cu™ s quenched due to crystalline-electric-field effects and covalency. Cu®" has an
odd number of d-electrons i.e. it is a so called Kramers ion with a doubly degenerated ground
state. Its paramagnetic moment is well approximated by the spin-only value of 1.73 Bohr
magnetons. The magnetic moment of Cu’’in cuprates is usually zero (low spin) due to a hig-
her degree of covalency. The Cu' cuprates, in particular their magnetic properties, are not
much investigated so far. Concerning the linkage of the copper sites by overlapping wave-
functions (in the localized-electron picture) or by dispersion of energy bands (in the de-
scription by itinerant electrons) most of the cuprates can be considered as quasi-two or one or
zero dimensional systems. The majority of published experimental and theoretical results on
copper magnetism concern the quasi-two dimensional cul cuprates because they contain most
of the undoped parent compounds for high-7,. superconductors. In the ionic approximation
the overlap of wave functions results in exchange interactions of the magnetic moments which
may lead to antiferromagnetic or ferromagnetic long-range order. As an alternative the low-
temperature behaviour can be governed by spin-singlet ground states which can be separated
from excited (magnetic) states by non-zero or zero gaps. In the case of cuprates the do-
minating type of interaction is antiferromagnetic superexchange via oxygen anions. Therefore
the mentioned parent compounds of high-7, superconductors can be considered, in a good
approximation, as 2D square lattice Heisenberg antiferromagnets. However, for understanding
the Néel type magnetic ordering of these materials at finite temperatures the crossover to
dimensionality three, mediated by interlayer exchange coupling of strength &, and to Koster-
litz-Thouless type ordering due to symmetric anisotropic exchange (strength a,,), have to be
taken into account. These crossover phenomena are not yet well understood. Progress in this
field will depend on whether a successful combination of analytical approaches with
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computational modeling can be developed. One of the main aims of this research will be to
establish complete 7-« -a,,-phase diagrams. A further problem is how Dzyaloshinsky-Moriya
type interaction modifies these phase diagrams or causes spin canting that may result in weak
ferromagnetism or weak antiferromagnetism. A promising modification of the layered
cuprates is to break-up the CuO, planes into weakly coupled ladders. Such spin ladders can be
used to study quantum phase transitions and crossover phenomena between dimensionality 0,

1,2 and 3.
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