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FAST MAGNON RELAXATION

J. A. MORKOWSKI
Ingtitute of Molecular Physics, Polish Academy of Sciences, Poznasi, Poland

Abstract. Magnon relaxation times are usually calculated by solving linearized Boltzmann-type eguation
for magnon occupation numbers. If in the initial state the occupation number of a particular magnon mode
is high, non-linear terms in the Boltzmann equation strongly enhance the short-time relaxation rate for that
magnon mode. The problem will be discussed in details for a case of three-magnon confluence processes
for degenerate magnon spectrum. The same qualitative features characterize higher order relaxation pro-
cesses like the four-magnon ones.

1. INTRODUCTION

To begin with, what we mean by “fast” relaxation? It will be shown below that the initial
relaxation rate of magnons after abrupt strong disturbance from an equilibrium state is enhanced
by a contribution due to non-linear effects. Thismorerapid, early stage of magnon relaxation will
be referred here as “fast relaxation”. (It should not be confused, in particular, with the specia
relaxation mechanism acting in some materials, seee.g. [1]).

Reaxation processesin ferromagnets were studied intensively in 50-ties and 60-ties of the last
century. Fundamentals are well established and summarized in excellent monographs by Keffer
[2], Sparks[1] and others. Studies of various relaxation processes were motivated by efforts to
explain the observed line width AH of the ferromagnetic resonance (FMR). In the model
ferromagnetic material which istheiron-yttrium garnet (Y1G) theory of relaxation is very suc-
cessful (see[1, 2]), not quite so in many other ferromagnetic materials in which a plethora of
mechanisms contribute to damping of the resonance line. In ferromagnetic resonance the line
width AH is often proportional to asum of relaxation rates (or inverse relaxation times) of afew
relaxations mechanism which dominate in a particular material and given conditions. Precession
of magnetization in ferromagnetic resonance can be considered as excitations of magnons driven
by the applied microwave field, magnons then decaying by relaxation mechanisms.

Magnon relaxation times are calculated for small disturbances of an equilibrium state by
linearizing Boltzmann type equation for time evolution of magnon occupation numbers or, equi-
valently by the Kubo linear response theory.

Non-linear effectsin ferromagnetic resonance at high microwave power were studied already
4-5 decades ago (see[3]), experiments on parallel pumping provided a method of accurate mea-
surements of magnon relaxation time in materialslike Y1G [1]. Later on, non-linear behaviour
of magnon excited by high power microwaves were studied looking for chaotic phenomenain
magnon systems (see e.g. [4]).

In thelast decade or so powerful techniques were devel oped for studying dynamics of mag-
netization in ferromagnets following strong pulses of magnetic field in an amazingly finetime
scale, in the femtoseconds range (see e.g. [5-9]).

These pulse experiments are the mativation for the present discussion of a smple magnon re-
laxation mechanism which leads to an interesting anomaly in time evol ution of magnon occu-
pancies.
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2. THREE-MAGNON CONFLUENCE PROCESSES

We shall consder herethe smplest relaxation processes in which nonlinear effects can play
arole. These arethe 3-magnon confluence processes due to dipolar interaction of magnetic mo-
ments of dectrons responsible for ferromagnetism (see e.g. [2] for the background information).
In numerical etimatesthe material parameters of Y1G will be taken, however the following con-
siderationsarein fact model independent and can be applied to itinerant el ectron ferromagnets
aswell (in this connection see[10]).

The 3-magnons confluence processes are the ones in which two magnons, of wave vectors say
K and g, annihilate and another magnon of momentum (K + q) is created. The transition rate or
the number of transitions in a unit of time is Wy n.n, (N, 4 + 1) where ny is the number of

magnons K and W, isthe transition probability calculated from the Fermi golden rule,
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The Dirac dfunction takes care of the magnon energy conservation and, for dipolar forces

fio = Kk k) and U7 ~ (W) ¥(7kg, (z = 1.7 x 10 P sec. for YIG), M is the mag-

netization. Therate of change dn,/dt of the population of magnonslz is a balance between therate

of their decaying and the inverse processes at the rate W, (0 + 1) (ng + 1) ny, ¢,

dn
d—tk = 7%: qunknq (nk+q + 1) + zq: qu (nk + 1) (nq + 1)nk+q 2
(cf. [2]). The magnon energy in the presence of dipolar interactions, for wave vectors k large as
compared with inverse dimensions of a sample and small as compared with inverse lattice spa-
cing, is
& - {(2u5H + DK?)(2pgH + 8mpM sin? 8, + DK?)}> ®)

where D is the magnon stiffness constant, H is the internal magnetic field (including the de-
magnetization term, H = Ho, - 47 N,M) and sind, = (k7 + k?)/k>. For practical calculations,
the degenerate spectrum (3) is customary approximated by simpler expression ¢, = 2ugH + DK
+ 4npgM sin217q with adight loss of accuracy. If the magnon occupation number ny(t) is close
to its equilibrium value at a given temperature n = 1/(e*/™ - 1), i.e. if ¢i(t) = n(t) -n%issmall
then the Boltzmann equation (2) can be linearized with respect to the deviations ¢ and (2) can
be approximated by

dg. 1
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5(= q((z’l)) isthe 3-magnon confluence rdaxation time and its meaning is clear from the obvious
solution of Eq. (4), (1) = ¢(0) e V% The above procedure illustrated by the ssmple example of
the 3-magnon confluence processes is standard for discussions of relaxation processes (see[2]).
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Now we try to solve the Boltzmann equation (2) for arbitrary deviations ¢,(t) from equi
librium, possibly large. Formally one can write Eq. (2) as

dg(t)
kt - {_j;( + ;[/k(t)} f;(t) + wlk(t)
where

(6)

(1) = Y0 (Wiq— Wig-1) (1) 63
and a
P = B0+ S Wig|[ng + 1)t e+ EWiady o (@)
q q
are not neglected now. The formal solution of (6), if #; and g, were known, is
;L(t) _ {4((0) v wk(t)} eft/Tk’ﬂk(I) (7)
where
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Asan initial condition we assume that at t = 0 magnons of one particular wave vector Q are
strongly excited, i.e. ¢,(0) =fq,o where f isalarge number. For f > 1, retaining only the leading
term ~f we have from (7a) (for K= Q)

t
Mo(t) = fwoo [ due 7 =,
0

The equation (8), a self-consistency condition, can be solved exactly to give
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Inthelimit t < 7, the approximation 76(t) = fWat holds and (if f > 1) from (7) it follows
Lo () = fe et

(10)
Therefore, for t < 75 the effective relaxation frequency of magnons Q

id:dl

— +Wqo
T
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(11)
isenhanced by the contribution fWqq (> 0). Exactly thisis what we mean by “fast relaxation”
inthe“initial” timeinterval, fromt =0tot < 79 the effective relaxation time ¢

o Isshorter than
7o, calculated from linearized Boltzmann Eq. (4) It isremarkable that the difference 1/1"Q Vg
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isproportional to theinitial disturbancei.e. the number f of magnons Q initially excited and is
temperature independent. Both properties can be easily understood: if at t = 0 alarge number f
of magnonsé iscreated, by far outweighting all other thermally excited magnonsin the system,
the dominant relaxation processes consist of decaying two magnons Q with creating a magnon
of wave vector (2Q). Ast increases beyond 7o To(t) approaches a constant value and the time
evolution of ¢(t) is determined by the standard relaxation time z,.

3. HIGHER ORDER PROCESSES

The concdusion (11) that initia relaxation frequency is enhanced over the one resulting from
linearized Boltzmann equation is valid also for higher order magnon relaxation processes.
The magnon Hamiltonian for aferromagnet (either of localized or itinerant electrons) with mag-
netic dipolar interactions taken into account contains 3- and 4-magnon interactions. Besides
the 3-magnon (2,1) confluence processes discussed in detailsin Section 2 there are 4-magnon
(2,2) scattering processes (a given magnon k collides with another one k' giving magnonsk + q
and k' - ) due to both exchange and dipolar interactions and (3,1) confluence processes
(amagnon Kk and two other, g and g’ vanish to produce amagnon kK + g + q’). The so-called
splitting processes, 3-magnon ((12) i.e. kK =g + (K - q)) or 4-magnon ((1,3)i.e kK =g +q'+
(K - q - q')) arenot considered here since they are allowed by energy conservation conditions
only if magnons wave vectors k exceed a threshold value k;,. Prospects of a possible
experimental verification of predictions for large k > k.., Seem to be remote, so they are not
discussed here,

The time evolution of (t) = n(t) - nﬁ in the presence of higher order magnon scattering
processes has the same form as (6) but now 1/, = 1/52% + /722 + 1/783Y and

) = X ALY Bay G- 12
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In thelimit f » 1, the explicit expression for ¢, (t) is not relevant so we do not quote it. I]Ez’l),
7%? and 73Y are the relaxation times calculated from linearized Boltzmann equation for
3-magnon confluence processes (2,1) (given by Eq. (5)), 4-magnon (2,2) scattering processes
and 4-magnon (3,1) confluence processe, respectively. Also, the coefficients Aqk and Bq';,
contain contributions from these interactions, A, = A®* + A @2+ A B where eg.
AP =Wg - W, o (. Eq. (62)). Explicit expressions for the coefficients will be published
elsewhere, with alittle effort they can be reproduced from formulae given in the reference [2].

Asprevioudy we assumethat at timet = 0 alarge number of particular magnons Q is excited,
i.e. §(t) = fo o f > 1. The same arguments previoudy explained, Egs. (7-11), lead
to the conclusion that in an initial interval of time, t < 7, the effective relaxation frequency
1/7, isagain enhanced over 1/, by acontribution f AS’. However, it appears that Bog can have
anon-vanishing value for the 4-magnon (3,1) confluence processes of dipolar origin. Therefore
atermf ?Bo3isalso present in 1/ 7y,

1 1 Q_ 2 Q
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AlthoughB( is much smaller than Ag>, for large f both corrections in (13) can reach

comparable values. Again, the corrections to the effective short-time relaxation frequency
v fo are 1° temperatureindependent and 2° increase with the strength of the disturbance f. These
two features could be the basis for a possible experimental verifications, perhaps in pul se experi-
ments.

4. DISCUSSION
The temperature independent correction to the relaxation rate fWqq, Eq. (11), depends on Q

and on the angle &, between Q and adirection of an applied magnetic field. A simple estimate
of the order of magnitude of the correction can be given considering fW, averaged over di-

rection of Q:

2 2 12
Fiwoo) ~fN11p( BQ* ~ H\f; H _ DQ ”
r | 2npgM 2M 2M  2zpgM
if Q satisfiesthe condition
2
e < 2w (15)
2M  2mpgM 2M

The conditions (15) can be satisfied for magnons Q in the degenerate spectrum (e.g. for YIG,
at H ~ 3kOe for Q ~ 0.02 in units of the inverse lattice constant). Thus f (W) is equal to

fN"? /7 multiplied by the function of Q varying between 0 and its maximal value 4 x 3 2.
Therefore the contribution f <WQQ> to the 3-magnon confluence relaxation rate is of the order of

magnitude (f/N) 1/z. For YIG f(Wqo) ~5 x 10 (f/N) 1/sec so even for small (f/N) the tem-
peratureindependent contribution fWq, to JJ@f, Eq. (11), can be comparable with /5, . For YIG
Yz, isalinear function of temperature, for Q = 0.02 given by /7, = 2 x 10° (T/300°K) 1/sec
(cf [1]).
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