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FAST MAGNON RELAXATION

J. A. MORKOWSKI

Institute of Molecular Physics, Polish Academy of Sciences, Poznań, Poland

Abstract. Magnon relaxation times are usually calculated by solving linearized Boltzmann-type equation
for magnon occupation numbers. If in the initial state the occupation number of a particular magnon mode
is high, non-linear terms in the Boltzmann equation strongly enhance the short-time relaxation rate for that
magnon mode. The problem will be discussed in details for a case of three-magnon confluence processes
for degenerate magnon spectrum. The same qualitative features characterize higher order relaxation pro-
cesses like the four-magnon ones.

1. INTRODUCTION

To begin with, what we mean by “fast” relaxation? It will be shown below that the initial
relaxation rate of magnons after abrupt strong disturbance from an equilibrium state is enhanced
by a contribution due to non-linear effects. This more rapid, early stage of magnon relaxation will
be referred here as “fast relaxation”. (It should not be confused, in particular, with the special
relaxation mechanism acting in some materials, see e.g. [1]).

Relaxation processes in ferromagnets were studied intensively in 50-ties and 60-ties of the last
century. Fundamentals are well established and summarized in excellent monographs by Keffer
[2], Sparks [1] and others. Studies of various relaxation processes were motivated by efforts to
explain the observed line width )H of the ferromagnetic resonance (FMR). In the model
ferromagnetic material which is the iron-yttrium garnet (YIG) theory of relaxation is very suc-
cessful (see [1, 2]), not quite so in many other ferromagnetic materials in which a plethora of
mechanisms contribute to damping of the resonance line. In ferromagnetic resonance the line
width )H is often proportional to a sum of relaxation rates (or inverse relaxation times) of a few
relaxations mechanism which dominate in a particular material and given conditions. Precession
of magnetization in ferromagnetic resonance can be considered as excitations of magnons driven
by the applied microwave field, magnons then decaying by relaxation mechanisms.

Magnon relaxation times are calculated for small disturbances of an equilibrium state by
linearizing Boltzmann type equation for time evolution of magnon occupation numbers or, equi-
valently by the Kubo linear response theory.

Non-linear effects in ferromagnetic resonance at high microwave power were studied already
4-5 decades ago (see [3]), experiments on parallel pumping provided a method of accurate mea-
surements of magnon relaxation time in materials like YIG [1]. Later on, non-linear behaviour
of magnon excited by high power microwaves were studied looking for chaotic phenomena in
magnon systems (see e.g. [4]).

In the last decade or so powerful techniques were developed for studying dynamics of mag-
netization in ferromagnets following strong pulses of magnetic field in an amazingly fine time
scale, in the femtoseconds range (see e.g. [5-9]).

These pulse experiments are the motivation for the present discussion of a simple magnon re-
laxation mechanism which leads to an interesting anomaly in time evolution of magnon occu-
pancies.
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2. THREE-MAGNON CONFLUENCE PROCESSES

We shall consider here the simplest relaxation processes in which nonlinear effects can play
a role. These are the 3-magnon confluence processes due to dipolar interaction of magnetic mo-
ments of electrons responsible for ferromagnetism (see e.g. [2] for the background information).
In numerical estimates the material parameters of YIG will be taken, however the following con-
siderations are in fact model independent and can be applied to itinerant electron ferromagnets
as well (in this connection see [10]).

The 3-magnons confluence processes are the ones in which two magnons, of wave vectors say
k and q , annihilate and another magnon of momentum (k + q ) is created. The transition rate or
6 6 6 6

the number of transitions in a unit of time is W n n (n + 1) where n is the number ofkq k q k + q k

magnons k and W is the transition probability calculated from the Fermi golden rule,
6

kq

W

The Dirac *-function takes care of the magnon energy conservation and, for dipolar forces
f = k (k + ik )/k and 1/J - (µ M ) /(S k ), (J – 1.7 × 10 sec. for YIG), M is the mag-k z x y B B

2 2 !12

netization. The rate of change dn /dt of the population of magnons k is a balance between the ratek
6

of their decaying and the inverse processes at the rate W (n + 1) (n + 1) n ,kq k q k + q

   W W

(cf. [2]). The magnon energy in the presence of dipolar interactions, for wave vectors k large as
compared with inverse dimensions of a sample and small as compared with inverse lattice spa-
cing, is

where D is the magnon stiffness constant, H is the internal magnetic field (including the de-
magnetization term, H = H ! 4B N M) and sin h = (k + k )/k . For practical calculations,ext z k x y

2 2 2 2

the degenerate spectrum (3) is customary approximated by simpler expression g = 2µ H + Dkk B
2

+ 4Bµ M sin h with a slight loss of accuracy. If the magnon occupation number n (t) is closeB q k
2

to its equilibrium value at a given temperature n = 1/(e / ! 1), i.e. if . (t) = n (t) !n is small0 g 0
k k k k

k k TB

then the Boltzmann equation (2) can be linearized with respect to the deviations . and (2) cank

be approximated by

where
W

J (/ J ) is the 3-magnon confluence relaxation time and its meaning is clear from the obviousk k
(2,1)

solution of Eq. (4), . (t) = . (0) e . The above procedure illustrated by the simple example ofk k
!t/Jk

the 3-magnon confluence processes is standard for discussions of relaxation processes (see [2]).
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Now we try to solve the Boltzmann equation (2) for arbitrary deviations . (t) from equi-k

librium, possibly large. Formally one can write Eq. (2) as

where
W  W

and

W W

are not neglected now. The formal solution of (6), if R and R were known, isk 1k

where

As an initial condition we assume that at t = 0 magnons of one particular wave vector Q are6

strongly excited, i.e. . (0) = f* where f is a large number. For f o 1, retaining only the leadingq k,Q

term -f we have from (7a) (for k = Q):
6 6

W

The equation (8), a self-consistency condition, can be solved exactly to give

W

In the limit t n J , the approximation 0 (t) – fW t holds and (if f o 1) from (7) it follows:Q Q QQ

W

Therefore, for t n J the effective relaxation frequency of magnons Q,Q
6

W

is enhanced by the contribution fW (> 0). Exactly this is what we mean by “fast relaxation”:QQ

in the “initial” time interval, from t = 0 to t n J the effective relaxation time J is shorter thanQ Q
f

J , calculated from linearized Boltzmann Eq. (4). It is remarkable that the difference 1/J ! 1/JQ Q Q
f
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(12)

(13)

is proportional to the initial disturbance i.e. the number f of magnons Q initially excited and is
temperature independent. Both properties can be easily understood: if at t = 0 a large number f
of magnons Q is created, by far outweighting all other thermally excited magnons in the system,

6

the dominant relaxation processes consist of decaying two magnons Q with creating a magnon
6

of wave vector (2Q). As t increases beyond J , 0 (t) approaches a constant value and the time6
Q Q

evolution of . (t) is determined by the standard relaxation time J .Q Q

3. HIGHER ORDER PROCESSES

The conclusion (11) that initial relaxation frequency is enhanced over the one resulting from
linearized Boltzmann equation is valid also for higher order magnon relaxation processes.
The magnon Hamiltonian for a ferromagnet (either of localized or itinerant electrons) with mag-
netic dipolar interactions taken into account contains 3- and 4-magnon interactions. Besides
the 3-magnon (2,1) confluence processes discussed in details in Section 2 there are 4-magnon
(2,2) scattering processes (a given magnon k collides with another one kNgiving magnons k + q6 6 6 6

and kN ! q ) due to both exchange and dipolar interactions and (3,1) confluence processes6 6

(a magnon k and two other, q and qNvanish to produce a magnon k + q + qN). The so-called
6 6 6 6 6 6

splitting processes, 3-magnon ((1,2) i.e. k = q + ( k ! q )) or 4-magnon ((1,3) i.e. k = q + qN+
6 6 6 6 6 6 6

( k ! q ! qN)) are not considered here since they are allowed by energy conservation conditions6 6 6

only if magnons wave vectors k exceed a threshold value k . Prospects of a possiblemin

experimental verification of predictions for large k > k seem to be remote, so they are notmin

discussed here.
The time evolution of . (t) = n (t) ! n in the presence of higher order magnon scatteringk k k

0

processes has the same form as (6) but now 1/J = 1/J + 1/J + 1/J andk k kk
(2,1) (2,2) (3,1)

A B

In the limit f o 1, the explicit expression for R (t) is not relevant so we do not quote it. J ,1k k
(2,1)

J and J are the relaxation times calculated from linearized Boltzmann equation fork k
(2,2) (3,1)

3-magnon confluence processes (2,1) (given by Eq. (5)), 4-magnon (2,2) scattering processes
and 4-magnon (3,1) confluence processe, respectively. Also, the coefficients A and Bq qqN

k k

contain contributions from these interactions, A = A + A + A where e.g.q
k (2,1)k (2,2)k (3,1)k

q q q

A = W ! W , (cf. Eq. (6a)). Explicit expressions for the coefficients will be publishedq kq k, q! k
(2,1)k

elsewhere, with a little effort they can be reproduced from formulae given in the reference [2].
As previously we assume that at time t = 0 a large number of particular magnons Q is excited,6

i.e. . (t) = f* , f o 1. The same arguments previously explained, Eqs. (7-11), leadk k, Q

to the conclusion that in an initial interval of time, t n J the effective relaxation frequencyQ

1/J is again enhanced over 1/J by a contribution f A . However, it appears that B can haveQ
f Q Q

Q Q QQ

a non-vanishing value for the 4-magnon (3,1) confluence processes of dipolar origin. Therefore
a term f B is also present in 1/J ,2 Q f

QQ Q

A B
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(14)

(15)

Although B is much smaller than A , for large f both corrections in (13) can reachQQ Q
Q Q

comparable values. Again, the corrections to the effective short-time relaxation frequency
1/J are 1E temperature independent and 2E increase with the strength of the disturbance f. TheseQ

f

two features could be the basis for a possible experimental verifications, perhaps in pulse experi-
ments.

4. DISCUSSION

The temperature independent correction to the relaxation rate f W , Eq. (11), depends on QQQ

and on the angle h between Q and a direction of an applied magnetic field. A simple estimateQ
6

of the order of magnitude of the correction can be given considering fW averaged over di-QQ

rection of Q:6

W

if Q satisfies the condition

The conditions (15) can be satisfied for magnons Q in the degenerate spectrum (e.g. for YIG,
at H - 3kOe for Q - 0.02 in units of the inverse lattice constant). Thus f +W , is equal toQQ

f N 1/J multiplied by the function of Q varying between 0 and its maximal value 4 × 3 .!1 !3/2

Therefore the contribution f +W , to the 3-magnon confluence relaxation rate is of the order ofQQ

magnitude (f/N) 1/J. For YIG f +W , -5 × 10 (f /N) 1/sec so even for small (f /N) the tem-QQ
11

perature independent contribution f W to 1/J , Eq. (11), can be comparable with 1/J . For YIGQQ Q Q
f

1/J is a linear function of temperature, for Q – 0.02 given by 1/J – 2 × 10 (T / 300EK) 1/secQ Q
6

(cf [1]).
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