Zakłady według daty modyfikacji

Badania



Cele badawcze

Ogólnym celem realizowanych prac jest wytworzenie i określenie właściwości nowych ferroików, multiferroików oraz poznanie mechanizmów transportu ładunku w przewodnikach szybkich jonów i polimerach.

W rodzinie ferroików w tym M-heksaferrytów Sr(Ba)Fe12O19 oraz multiferroików BiFeO3, celem szczegółowym jest synteza (za pomocą metody hydrotermalnej lub mechanosyntezy), a następnie określenie wpływu domieszek jonów Nd3+, Al3+, Sc3+ oraz morfologii na ich właściwości magnetoelektryczne i oddziaływania z polami elektromagnetycznymi. Prowadzone są również badania mające na celu poznanie uporządkowań magnetycznych w zbiorach nanocząsteczek np. magnetytu Fe3O4 w otoczce krzemionkowej oraz pomiary właściwości elektrycznych domieszkowanych układów z rodziny LiMn2O4.

W grupie przewodników szybkich jonów celem jest poznanie mechanizmów przewodnictwa elektrycznego, przemian strukturalnych oraz właściwości ferroelektrycznych związków organicznych, takich jak np. nowe ferroelektryki [C(NH2)3]4X2SO4 (X=Cl, Br), kryształy [C(NH2)3]4Cl2SO4 i (NH4)4H2(SeO4)2. Podobne badania wykonywane są także dla związków o hiperpolaryzowalnych kationach organicznych jak np. wodorosiarczan disobutylo-amoniowy [(CH3)2CHCH2]NHSO4.

Rys. 1 Wpływ efektu rozmiarowego na właściwości magnetyczne żelazianu bizmutu BiFeO3
Rys. 1 Wpływ efektu rozmiarowego na właściwości magnetyczne żelazianu bizmutu BiFeO3

Profil badawczy

Badanie własności elektrycznych i magnetycznych materiałów oraz nanomateriałów ferroicznych, M-heksaferrytów, multiferroików, ferroelektryków oraz przewodników jonowych i superprotonowych metodami wysokoczęstościowej dielektrometrii oraz magnetometrii (magnetometr z wibrującą próbką VSM, podatnościomierz AC), charakteryzowanie: morfologii, składu i struktury tych materiałów za pomocą mikroskopii elektronowej (SEM, TEM, SAED, EDS), dyfrakcji rentgenowskiej, oraz wytwarzanie materiałów i nanomateriałów metodą mechanosyntezy i mikrofalowo aktywowanej syntezy hydrotermalnej.

Rys. 2. Różne formy nano- i mikrokryształów żelazianu bizmutu BiFeO3 (synteza dr K. Chybczyńska). Rys. 3. Różne formy nano- i mikrokryształów żelazianu bizmutu BiFeO3 (synteza dr K. Chybczyńska). Rys. 4. Różne formy nano- i mikrokryształów żelazianu bizmutu BiFeO3 (synteza dr K. Chybczyńska). Rys. 5. Różne formy nano- i mikrokryształów żelazianu bizmutu BiFeO3 (synteza dr K. Chybczyńska).

Rys. 2-5. Różne formy nano- i mikrokryształów żelazianu bizmutu BiFeO3 (synteza dr K. Chybczyńska).

Programy badawcze

  • Projekt NCN (Miniatura 1) - Wpływ mikro- i nanostruktury na własności dielektryczne i magnetyczne kompozytów celuloza - spinel kobaltowy (2017-2018), kierownik - dr hab. E. Markiewicz
  • Projekt 02.03.02-22-0006/15 - Opracowanie kompozytowego materiału ekranującego pole elektromagnetyczne w wysokich i niskich częstotliwościach -beneficjent: ADR Technology Stanisław Wosiński, kierownik ze strony wykonawcy – dr hab. B. Andrzejewski, prof. IFM PAN
  • Projekt NCN (Sonata 8) - Uniwersalne cechy przewodnictwa elektrycznego przewodników protonowych (2015-2018), kierownik - dr inż. P. Ławniczak
  • Projekt MNiSW - Jedno i wielofazowe ferroiki i multiferroiki (2010-2014), kierownicy - prof. B. Hilczer, dr hab. M. Połomska, prof. IFM PAN
  • Projekt SIMUFER COST Action - Single- and multiphase ferroics and multiferroics with restricted geometries (2010-2014), kierownik - MC Substitute Member: dr hab. M. Połomska, prof. IFM PAN
  • Projekt MNiSW - Wpływ ciśnienia na nieliniowy charakter przewodnictwa protonowego - eksperyment i modelowanie (2010-2014), kierownik - dr hab. M. Zdanowska-Frączek, prof. IFM PAN
  • Projekt MNiSW - Otrzymywanie i własności nanocząstek wybranych materiałów funkcjonalnych (2011-2013), kierownik - dr hab. B. Andrzejewski, prof. IFM PAN
  • Projekt promotorski MNiSW - Przewodnictwo elektryczne i struktura nowych krystalicznych elektrolitów stałych z molekułami benzimidazolu (2010-2011), kierownik - prof. Cz. Pawlaczyk (doktorant - mgr inż. P. Ławniczak)
  • Projekt MNiSW - Dynamika molekularna elektroaktywnych polimerów uwięzionych w nanoporach, (2008-2011), kierownik - prof. B. Hilczer
  • Projekt MNiSW - Nowe elektrolity stałe z molekułami heterocyklicznymi (2007-2010), kierownik - prof. Cz. Pawlaczyk
  • Projekt MNiSW - (ELENA COST Action) - Electroceramics from nanopowders produced by innovative methods (2006-2009), kierownik - MC Member: prof. B. Hilczer
  • Projekt MNiSW - (POL-POSTDOC) - Otrzymywanie nanostruktur ferroelektrycznych (2005-2009), kierownik - dr I. Szafraniak, opiekun naukowy - prof. B. Hilczer

Osiągnięcia naukowe

  • Potwierdzenie własności ferroelektrycznych w grupie tlenków BaTiO3 oraz (Ba,Sr)MnO3 uzyskanych poprzez tradycyjne spiekanie [R. Bujakiewicz-Korońska et al. J. Eur. Ceram. Soc. 37, 1477, (2017)].
  • Wykazanie, iż struktura szczawianu 1H-pirazolu składa się z dwuwymiarowych warstw zbudowanych z jednowymiarowych łańcuchów zawierających kwasy pirazoliowe i szczawianowe połączone wiązaniami N-H∙∙∙O i O-H∙∙∙O. Teoretyczne wyjaśnienie mechanizmów transportu elektrycznego oraz wyznaczenie ścieżek przewodnictwa. [M. Widelicka et al. Phys. Chem. Chem Phys. 19, 25653, (2017)]
  • Synteza nanokompozytów SrFe12O19-CoFe2O4 i potwierdzenie oddziaływania sprężynkowego (sping exchange) pomiędzy fazą magnetycznie miękką heksaferrytu SrFe12O19 i fazą magnetycznie twardą spinela CoFe2O4. [A. Hilczer et al. Mater. Sci. Eng., B, 207, 47, (2016)]
  • Wyjaśnienie mechanizmów relakasacji dielektrycznej oraz przewodnictwa elektrycznego w multiferroiku BiFeO3 otrzymanym metodą hydrotermalną wspomagana mikrofalowo [K. Chybczyńska et al. J. Alloys Compd. 671, 493 (2016)].
  • Wykazanie, iż we własnościach magnetycznych wodorowanego antracytu dominuje magnetyzm Pauliego związany z elektronami przewodnictwa. Paramagnetyzm typu Curie pochodzi natomiast od elektronów zlokalizowanych na ziarnach antracytu. [K. Tadyszak et al. Carbon 94, 53, (2015)].
  • Wyjaśnienie mechanizmu przewodnictwa elektrycznego ceramik (1-x)Ba0.95Pb0.05TiO3+xCo2O3, które w wysokich temperaturach zdominowane jest przez migrację tlenu pomiędzy wakansami powstającymi wskutek podstawienia jonów Co3+. Dla tych materiałów potwierdzono również istnienie słabego sprzężenia elektromagnetycznego [R. Bujakiewicz-Korońska et al. Ceram. Int. 41, 3983, (2015)].
  • Opracowanie metody mikrofalowo aktywowanej syntezy hydrotermalnej pozwalającej otrzymywać nano- i mikrokryształy ferroików (magnetytu Fe3O4, hematytu Fe2O3 M-heksaferrytów Sr(Ba)Fe12O19) oraz multiferroików (BiFeO3) o dokładnie kontrolowanej stechiometrii i morfologii (płatki, sześciany, sfery, nanokwiaty itd.) [K. Chybczyńska et al., J. Mater. Sci. 49, 2596 (2014)]
  • Identyfikacja źródła pochodzenia fazy nieuporządkowanej w krystalicznych układach protonowo przewodzących otrzymanych na bazie organicznych kwasów dwukarboksylowych oraz molekuł heterocyklicznych. Potwierdzenie, że rzeczywistym źródłem fazy nieuporządkowanej są granice ziaren, a molekuły heterocykliczne w silnie zdefektowanej sieci krystalicznej wykazują znacznie większą lokalną dynamikę molekularną niż w uporządkowanych obszarach wewnątrz ziarnowych [K. Pogorzelec-Glaser et al., CrystEngComm 15, 1950 (2013)]
  • Wyznaczenie uporządkowania i dynamiki molekularnej ferroelektrycznych polimerów PVDF oraz P(VDF/TrFE)(50/50) w nanokanałach porowatej matrycy trójtlenku glinu [B. Hilczer et al., App. Phys. Lett. 100, 052904 (2012)]
  • Zgłoszenia patentowe P.407222 Sposób wytwarzania kompozytów multi-włóknistych oraz P.407227 Sposób wytwarzania drutów ze splotów kompozytowych dokonane wspólnie z Instytutem Metali Nieżelaznych w Gliwicach.
 
 

Współpraca

  • Institute of Physics of the Czech Academy of Sciences, Praga, Republika Czeska
  • Institute of Solid State Physics, Solid States Electrolytes Department, Institute of Electrochemistry and Energy Systems, Bulgarian Academy of Sciences, Sofia, Bułgaria
  • Northern Illinois University, DeKalb, Stany Zjednoczone
  • University of Latvia, Ryga, Łotwa
  • Centrum NanoBioMedyczne UAM, Poznań
  • Instytut Metali Nieżelaznych, Gliwice
  • Instytut Niskich Temperatur i Badań Strukturalnych we Wrocławiu
  • Instytut Ochrony Roślin - Państwowy Instytut Badawczy
  • Instytut Technologii Materiałów Elektronicznych, Warszawa
  • Opolski Uniwersytet Technologiczny w Opolu
  • Politechnika Poznańska, Poznań
  • Politechnika Rzeszowska, Rzeszów
  • Uniwersytet im. Adama Mickiewicza w Poznaniu
  • Uniwersytet Medyczny, Poznań
  • Uniwersytet Pedagogiczny im. Komisji Edukacji Narodowej w Krakowie

Badania

Cele badawcze

Realizowane są dwa główne cele badawcze. Pierwszy z nich nakierowany jest na badania nowoczesnych materiałów węglowych (GO, RGO, nano-diamenty, włókna węglowe) w obszarach spintorniki i elektroniki molekularnej oraz możliwości wykorzystania tych materiałów w obszarach energetyki (konwersja energii, superkondensatory i separacja izotopu He3). Drugi z celów dotyczy badań polarnych stanów w kwantowych paraelektrykach.

Profil badawczy

Działalność naukowa związana jest z badaniami niskotemperaturowymi w obszarze fizyki ciała stałego: przemian fazowych, nadprzewodnictwa, nanoukładów węglowych oraz fizyki cieczy kwantowych: 4He i 3He. Tematy badawcze realizowane są z wykorzystaniem następującej aparatury naukowej: spektrometru elektronowego rezonansu paramagnetycznego (4.2 - 300 K), układu do pomiarów dielektrycznych, podatności magnetycznej i zjawisk transportu: przewodnictwa elektrycznego i cieplnego z kriostatem wykorzystującym He3 (0.3 - 300 K) oraz spektrometru mas (detekcja koncentracji na poziomie 10-3 ppm mas z zakresu 1 - 128 amu) pracującego w układzie do separacji izotopu He3 z ciekłego helu.

Programy badawcze

  • Projekt MNiSW - Nanoukłady węglowe dla elektroniki molekularnej i spintroniki (2010-2013), kierownik - dr hab. W. Kempiński, prof. IFM PAN,
  • Projekt NCN - Niskotemperaturowe badania polarnych stanów w kwantowym paraelektryku K1-xLixTaO3 (2011-2015), kierownik - prof. Z. Trybuła,
  • Projekt NCBiR - Pozyskiwanie izotopu 3He z ciekłego 4He (2012-2016), grant realizowany w ramach konsorcjum: IFM PAN - PGNiG S.A. Odział w Odolanowie - PWr, lider projektu - IFM PAN, kierownik - dr hab. W. Kempiński, prof. IFM PAN.

Osiągnięcia naukowe

  • Badania EPR i XPS  tlenku grafenu (GO) oraz zredukowanego tlenku grafenu (RGO) w postaci czystej oraz domieszkowanej wybranymi molekułami pozwoliły przeanalizować zjawisko lokalizacji ładunku i spinu w tych materiałach i określić ich wysoką czułość na obecność molekuł gościa,
    [M. Kempiński et al., Appl. Phys. Lett. 111 (8) 084102 (2017)],
  • Zagadnienia związane z konwersją energii wytyczają główne kierunki badań w zakresie materiałów węglowych. W materiałach kompozytowych grafitowego azotku węgla opisany został odwrotny efekt fotoelektryczny,
    [M. Seredych, Sz. Łoś, et al., Chem. Sus. Chem 9 (2016) 795],
  • Na podstawie temperaturowych badań liniowej i nieliniowej podatności dielektrycznej wykryto istnienie polarnych nanoobszarów w czystym kwantowym paraelektryku KTaO3 poniżej temperatury 40K,
    [Z. Trybuła et al. Sol. State Commun. 209-210, 23 (2015)],
  • Systematyczne badania kryształu K1-xLixTaO3 pozwoliło na zaproponowanie mechanizmu powstania stanu ferroelektrycznego dla x>0,22,
    [Z. Trybuła, et al. Mat. Res. Bull., 84, 298-302 (2016); Z. Trybuła, et al. Phys. Stat. Solidi B 253, No 6, 1076-1081 (2016)],
  • Polaryzacja spontaniczna powstaje w wyniku przesunięcia względem siebie jonów tantalu i tlenów w otoczeniu oktaedrycznym. Mechanizm ten umożliwia domieszka jonów litu, które zmniejszają wartość pola depolaryzacyjnego. Wyjaśniono także mechanizm dodatniej wartości trzeciego nieliniowego współczynnika podatności dielektrycznej χ3, którego przebieg temperaturowy określa charakter przejścia fazowego. Pokazano także, że w tej grupie kryształów ma miejsce współistnienie stanu ferroelektrycznego i relaksorowego,
    [Sz. Łoś, et al. J. Phys. Chem. A 120, 8970-8975 (2016), Z. Trybuła et al. Phase Transitions 89 (7-8) 794-802 (2016)],
  • Szerokie spectrum technik eksperymentalnych stosowanych w badaniach zjawiska lokalizacji i transportu elektrycznego w nanomateriałach węglowych zawarto w pracy:
    [W. Kempiński et al. Beilstein J. Nanotechnol. 5 (2014) 1760-1766],
  • W oparciu o badania EPR i czteropunktowego przewodnictwa elektrycznego zaproponowano model przewodnictwa przeskokowego dla układów aktywowanych włókien węglowych,
    [M. Kempiński et al., Appl. Phys. Lett. 88, 143103 (2006), W. Kempiński et al. Carbon 57, 530 (2013)],
  • Zbadano wpływ promieniowania ultradźwiękowego na strukturę kryształów grafitu i możliwość otrzymania przy jej pomocy pojedynczych płaszczyzn grafenowych. Metoda może być wykorzystana jako alternatywna i tańsza względem metod chemicznych lub innych fizycznych, obecnie stosowanych,
    [Sz. Łoś et al., Micropor. Mesopor. Mat. 130, 21 (2010), Sz. Łoś et al. Carbon 55, 53 (2013)],
  • W latach 20013-2016 Zakład Fizyki Niskich Temperatur realizował trzy projekty badawcze. Jeden z projektów został zakończony w roku 2013, dwa pozostałe w latach 2015 -2016. Każdy z projektów finansowany był z oddzielnego źródła: NCN, MNiSW oraz NCBiR. Dużym sukcesem było zawiązanie Konsorcjum Naukowego, w skład którego weszły trzy podmioty: IFM PAN, PGNiG S.A. w Warszawie, Oddział w Odolanowie i Politechnika Wrocławska. Liderem Konsorcjum został IFM PAN. W ramach tego projektu podjęto próbę wzbogacenia mieszaniny He4/He3 w izotop He3. Pozytywne wyniki uzyskano zarówno w badaniach laboratoryjnych (układ do separacji statycznej) jak i przemysłowych (separacja dynamiczna w separatorze przepływowym). Projekt PiHe3 realizowany był z udziałem jedynego producenta ciekłego helu w kraju i w Europie - PGNiG S.A. w Warszawie, Oddział w Odolanowie,
    [M. Chorowski et al. Cryogenic Engineering,  Book Series: AIP Conference Proceedings 1573 (2014) 276-284].

 

Badania

Badania Zakładu koncentrują się na poznawaniu mechanizmów tworzenia i stabilizacji faz ciekłokrystalicznych. Prowadzona jest analiza wpływu różnych czynników (pole elektryczne, temperatura, defekty, domieszkowanie polimerowe, oddziaływania powierzchniowe) na własności fizyczne ciekłych kryształów. Ponadto rozwijane są metody symulacji komputerowych ze szczególnym uwzględnieniem symulacji układów cząsteczek miękkiej materii.

W Zakładzie prowadzone są badania mezofaz: nematyków, smektyków, cholesteryków, sfrustrowanych faz chiralnych (TGB, BP), ferro- i antyferroelektrycznych smektyków oraz superstruktur liotropowych opartych na celulozie. Obejmują one charakterystykę własności strukturalnych, termodynamicznych, optycznych, dielektrycznych, elektrooptycznych i lepko-sprężystych w funkcji częstotliwości i natężenia pola elektrycznego, składu oraz temperatury. Wykonuje się również modelowanie miękkiej materii i cieczy prostych metodami symulacji komputerowych (dynamiki molekularnej MD, dynamiki brownowskiej BD, Monte Carlo MC).

Przykłady realizowanych zagadnień

  1. Własności strukturalne, dielektryczne, lepko-sprężyste i elektrooptyczne w chiralnych ciekłych kryształach, ze szczególnym uwzględnieniem faz błękitnych.
  2. Zagadnienie samoorganizacji w układach miękkiej materii (ciekłych kryształach, koloidach).
  3. Badania nieliniowych efektów dynamicznych w stabilizowanych powierzchniowo ciekłych kryształach.
  4. Wpływ oddziaływań powierzchniowych na własności fizyczne cienkich ciekłokrystalicznych układów smektycznych .
  5. Rozwijanie metod symulacji komputerowych (MC, MD, BD): termostatów deterministycznych oraz metod symulacji układów cząsteczek w warunkach silnych ograniczeń przestrzennych.  
  6. Symulacje własności strukturalnych, termodynamicznych i dynamicznych modelowych układów miękkiej materii i cieczy prostych.
  7. Badania układów warstwowych typu ciekły kryształ /celuloza.

Programy badawcze

  • Projekt statutowy - Własności fizyczne cienkich warstw ciekłokrystalicznych (2016-2018), kierownik - dr hab. A.C. Brańka, prof. IFM PAN
  • Projekt NCN (OPUS 13) - Własności elastyczne ciekłokrystalicznych faz błękitnych (2018 - 2021), kierownik - dr hab. A.C. Brańka, prof. IFM PAN
  • Projekt NCN (MINIATURA 1) - Wytworzenie i charakterystyka układów nanokrystaliczna celuloza/ciekły kryształ (2017/2018), kierownik - dr inż. N. Bielejewska
  • Udział w projekcie LIDER (Edycja VII) realizowanym przez Instytut Technologii Drewna - Nowe spoiwa biopolimerowe modyfikowane silanami oraz cieczami jonowymi do zastosowań w technologii tworzyw drzewnych (2017 - 2019), główny wykonawca - dr inż. N. Bielejewska
  • Projekt NCN (OPUS 3) - Stany stacjonarne w przestrzennie ograniczonych układach mikroskopowych: mikroszczeliny akustyczne i stymulowane cząsteczki mikrożelowe w mikrokanałach (2013 - 2016), kierownik - dr hab. A.C. Brańka, prof. IFM PAN
  • Projekt MNiSW - Identyfikacja nowego rodzaju fazy de Vries’a (2010 - 2014), kierownik - dr hab. J. Hoffmann, prof. IFM PAN

Publikacje

Publikacje: 2020, 2019, 2018, 2017, 2016, 2015, 2014, 2013, 2012, 2011, 2010, 2009, 2008, 2007, 2006, 2005

2020

  1. K.P. Wójcik, I. Weymann, J. Kroha
    Magnetic Kondo Regimes in a Frustrated Half-Filled Trimer
    Phys. Rev. B 102, 045144 (2020)
  2. I. Weymann, K.P. Wójcik, P. Majek
    Majorana-Kondo Interplay in T-Shaped Double Quantum Dots
    Phys. Rev. B 101, 235404 (2020)
  3. I. Weymann, M. Zwierzycki, S. Krompiewski
    Spectral Properties of a Co-Decorated Quasi-Two-Dimensional GaSe Layer
    Phys. Rev. B 102, 075309 (2020)
  4. L. Chotorlishvili, Z. Toklikishvili, X.-G. Wang, V.K. Dugaev, J. Barnaś, J. Berakdar
    Stratonovich-Ito Integration Scheme in Ultrafast Spin Caloritronics
    Phys. Rev. B 102, 024413 (2020)
  5. Ł. Karwacki, K. Grochot, S. Łazarski, W. Skowroński, J. Kanak, W. Powroźnik, J. Barnaś, F. Stobiecki, T. Stobiecki
    Optimization of Spin Hall Magnetoresistance in Heavy-Metal/Ferromagnetic-Metal Bilayers
    Scientific Reports 10, 10767 (2020)
  6. P. Florków, D. Krychowski, S. Lipiński
    Kondo Effects in Small-Bandgap Carbon Nanotube Quantum Dots
    Beilstein J. Nanotechnol 11, 1873 (2020)+
  7. D. Krychowski, S. Lipiński
    The Role of Spin-Flip Assisted or Orbital Mixing Tunneling on Transport through Strongly Correlated Multilevel Quantum Dot
    Journal of Magnetism and Magnetic Materials 497, 166050 (2020)
  8. D.C. Vaz, F. Trier, A. Dyrdał, A. Johansson, K. Garcia, A. Barthélémy, I. Mertig, J. Barnaś, A. Fert, M. Bibes
    Determining the Rashba Parameter from the Bilinear Magnetoresistance Response in a Two-Dimensional Electron Gas
    Phys. Rev. Materials 4, 071001 (2020)
  9. P. Florków, D. Krychowski, S. Lipiński
    Phonon-Assisted Transport through Double-Dot Aharonov-Bohm Interferometer in Kondo Regime
    Acta Phys. Pol. A 137, 747 (2020)

2019

  1. W. Skowroński, Ł. Karwacki, S. Ziętek, J. Kanak, S. Łazarski, K. Grochot, T. Stobiecki, P. Kuświk, F. Stobiecki, J. Barnaś
    Determination of Spin Hall Angle in Heavy-Metal/Co−Fe−B-Based Heterostructures with Interfacial Spin-Orbit Fields
    Phys. Rev. Applied 11, 024039 (2019)
  2. S. Łazarski, W. Skowroński, J. Kanak, Ł. Karwacki, S. Ziętek, K. Grochot, T. Stobiecki, F. Stobiecki
    Field-Free Spin-Orbit-Torque Switching in Co/Pt/Co Multilayer with Mixed Magnetic Anisotropies
    Phys. Rev. Applied 12, 014006 (2019)
  3. K.P. Wójcik, M. Misiorny, I. Weymann
    Giant Superconducting Proximity Effect on Spintronic Anisotropy
    Phys. Rev. B 100, 045401 (2019)
  4. L. Chotorlishvili, Z. Toklikishvili, X.-G. Wang, V.K. Dugaev, J. Barnaś, J. Berakdar
    Influence of Spin-Orbit and Spin-Hall Effects on the Spin-Seebeck Current beyond Linear Response: A Fokker-Planck Approach
    Phys. Rev. B 99, 024410 (2019)
  5. K.P. Wójcik, I. Weymann
    Nonlocal Pairing as a Source of Spin Exchange and Kondo Screening
    Phys. Rev. B 99, 045120 (2019)
  6. S. Krompiewski
    Selected Graphenelike Zigzag Nanoribbons with Chemically Functionalized Edges: Implications for Electronic and Magnetic Properties
    Phys. Rev. B 100, 125421 (2019)
  7. P. Ogrodnik, F.A. Vetrò, M. Frankowski, J. Chęciński, T. Stobiecki, J. Barnaś, J.-P. Ansermet
    Field- and Temperature-Modulated Spin Diode Effect in a GMR Nanowire with Dipolar Coupling
    Journal of Physics D: Applied Physics 52, 065002 (2019)

2018

  1. M. Inglot, V.K. Dugaev, J. Berakdar, E.Ya. Sherman, J. Barnaś
    Charge and Spin Currents in Graphene Generated by Tailored Light with Orbital Angular Momentum
    Applied Physics Letters 112, 231102 (2018)
  2. S. Krompiewski
    Half-Metallicity in Zigzag Phosphorene Nanoribbons with Magnetic Edges
    NANOTECHNOLOGY 29, 385204 (2018)
  3. Ł. Karwacki, A. Dyrdał, J. Berakdar, J. Barnaś
    Current-Induced Spin Polarization in the Isotropic k-Cubed Rashba Model: Theoretical Study of p-Doped Semiconductor Heterostructures and Perovskite-Oxide Interfaces
    Phys. Rev. B 97, 235302 (2018)
  4. K.P. Wójcik, I. Weymann
    Interplay of the Kondo Effect with the Induced Pairing in Electronic and Caloric Properties of T-Shaped Double Quantum Dots
    Phys. Rev. B 97, 235449 (2018)
  5. A. Dyrdał, J. Barnaś, V.K. Dugaev, J. Berakdar
    Thermally Induced Spin Polarization in a Magnetized Two-Dimensional Electron Gas with Rashba Spin-Orbit Interaction
    Phys. Rev. B 98, 075307 (2018)
  6. Ł. Karwacki, J. Barnaś
    Thermoelectric Properties of a Quantum Dot Coupled to Magnetic Leads by Rashba Spin-Orbit Interaction
    Phys. Rev. B 98, 075413 (2018)
  7. D. Krychowski, S. Lipiński
    Intra- and Inter-Shell Kondo Effects in Carbon Nanotube Quantum Dots
    The European Physical Journal B 91, 8 (2018)
  8. S. Krompiewski, G. Cuniberti
    Effect of Magnetic Zigzag Edges in Graphene-like Nanoribbons on the Thermoelectric Power Factor
    ACTA PHYSICA POLONICA A 133, 535 (2018)
  9. D. Krychowski, S. Lipiński, G. Cuniberti
    Spin Dependent Conductance of a Quantum Dot Side Attached to Topological Superconductors as a Probe of Majorana Fermion States
    ACTA PHYSICA POLONICA A 133, 552 (2018)

2017

  1. A. Dyrdal, J. Barnaś
    Anomalous, spin, and valley Hall effects in graphene deposited on ferromagnetic substrates
    2D Materials, 4, 3, 034003 (2017)
  2. S. Krompiewski, G. Cuniberti
    In-Plane Edge Magnetism in Graphene-Like Nanoribbons
    Acta Physica Polonica A, 131, 4, 1, 828-829 (2017)
  3. M. Zwierzycki, D. Ryndyk
    Magnetic Properties of Hexagonal Graphene Nanomeshes
    Acta Physica Polonica A, 131, 4, 1, 830-832 (2017)
  4. I. Weymann, M. Zwierzycki, S. Krompiewski
    Spectral properties and the Kondo effect of cobalt adatoms on silicene
    Physical Review B, 96, 115452 (2017)
  5. S. Krompiewski, G. Cuniberti
    Edge magnetism impact on electrical conductance and thermoelectric properties of graphenelike nanoribbons
    Physical Review B, 96, 155447 (2017)
  6. D. Krychowski, P. Florków, M. Antkiewicz, S. Lipiński
    Transport through capacitively coupled embedded and T-shape quantum dots in the Kondo range
    Physica E, 98, 1-8 (2017)

2016

  1. S. Ziętek, P. Ogrodnik, W. Skowroński, F. Stobiecki, S. van Dijken, J. Barnaś, T.  StobieckI
    Electric-field tunable spin diode FMR in patterned PMN-PT/NiFe structures
    Applied Physics Letters, 109, 072406 (2016)
  2. S. Krompiewski
    Edge magnetism of finite graphene-like nanoribbons in the presence of intrinsic spin-orbit interaction and perpendicular electric field
    Nanotechnology, 27, 315201 (2016)
  3. D. Krychowski,  S. Lipiński
    Spin-orbital and spin Kondo effects in parallel coupled quantum dots
    Physical Review B, 7, 93, 075416-1-075416-15 (2016)
  4. P. Balaz, M. Zwierzycki, J-P Ansermet, J. Barnaś
    Estimation of transverse spin penetration length using second-harmonic measurement: Proposal of an experimental method
    Physical Review B. 94 144414 (2016)
  5. M. Falkowski, D. Krychowski, A.M. Strydom
    Detailed investigation of thermal and electron transport properties in strongly correlated compound Ce6Pd12In5 and its nonmagnetic analog La6Pd12In5
    Journal of Applied Physics 120, 195106 (2016)
  6. V.A. Stephanovich, V.K. Dugaev, J. Barnaś
    Two-dimensional electron gas at the LaAlO3/SrTiO3 inteface with a potential barrier
    Physical Chemistry & Chemical Physics 18, 2104 (2016)

2015

  1. S. Krompiewski
    Effect of External Contacts on Edge Magnetic Moments in Graphene Nanoribbons
    Acta Physica Polonica A, 2, 127, 523-524 (2015)
  2. S. Ziętek, P. Ogrodnik, W. Skowroński, P. Wiśniowski, M. Czapkiewicz, T. Stobiecki, J. Barnaś
    The influence of interlayer exchange coupling in giant-magnetoresistive devices on spin diode effect in wide frequency range
    Applied Physics Letters, 12, 107 (2015)
  3. S. Wolski, T. Szczepanski, V.K. Dugaev, J. Barnaś, B. Landgraf, T. Slobodskyy, W. Hansen
    Spin and charge transport in double-junction Fe/MgO/GaAs/MgO/Fe heterostructures
    Journal Of Applied Physics, 4, 117, 043908-1-7 (2015)
  4. K. Zberecki, R. Swirkowicz, J. Barnaś
    Thermoelectric properties of zigzag silicene nanoribbons doped with Co impurity atoms
    Journal Of Magnetism And Magnetic Materials, 393, 305-309 (2015)
  5. S. Ziętek, P. Ogrodnik, M. Frankowski, J. Chęciński, P. Wiśniowski, W. Skowroński, J. Wrona, T. Stobiecki, A. Żywczak, J. Barnaś
    Rectification of radio-frequency current in a giant-magnetoresistance spin valve
    Physical Review B, 1, 91 (2015)
  6. M. Inglot, A. Dyrdal, V.K. Dugaev, J. Barnaś
    Thermoelectric effect enhanced by resonant states in graphene
    Physical Review B, 11, 91 (2015)
  7. P. Balaz, J. Barnaś
    Effects of spin pumping on spin waves in antiferromagnetically exchange-coupled double layers
    Acta Physica Polonica A, 128, 150 (2015)
  8. A. Dyrdal, J. Barnaś
    Current-induced spin polarization and spin-orbit torque in graphene
    Physical Review B, 16, 92 (2015)
  9. D. Krychowski, S. Lipiński,       
    Kondo-Fano Effect in Double Quantum Dot Side Attached to a Pair of Wires
    Acta Physica Polonica A, 2, 127, 487-489 (2015)
  10. I. Weymann, J. Barnaś, S. Krompiewski
    Transport through graphenelike flakes with intrinsic spin-orbit interactions
    Physical Review B, 92, 045427_1-9 (2015)
  11. J.P. Cascales, J-Y. Hong, I. Martinez, M-T. Lin, T. Szczepański, V.K. Dugaev, J. Barnaś, F.G. Aliev
    Superpoissonian shot noise i organic magnetic tunnel junctions
    Applied Physics Letters, 105, 233302 (2014)

2014

  1. M. Zwierzycki, M. Zwierzycki
    Transport properties of rippled graphene
    Journal of Physics-Condensed Matter 26, 135303, (2014)
  2. S. Krompiewski
    Limited robustness of edge magnetism in zigzag graphene nanoribbons with electrodes
    Nanotechnology 25, 465201, (2014)                                                            
  3. S. Krompiewski
    Electronic Transport in Multi-Terminal Graphene Device with Various Arrangements of Electrodes
    Acta Physica Polonica A 126, 194, (2014)                                
  4. S. Lipiński, D. Krychowski
    Correlation effects and spin dependent transport in carbon nanostructures
    Acta Physica Polonica A 126, 190, (2014)
  5. D. Krychowski, J. Kopiński, S. Lipiński
    Fano-Kondo effect of magnetic impurity with side-coupled graphene flake
    Acta Physica Polonica A 126, 202, (2014)
  6. A. Dyrdał, J. Barnaś
    Spin Hall effect in AA-stacked bilayer grapheme
    Solid State Communications 188, 27 (2014)
  7. D. Krychowski, J. Kaczkowski, S. Lipiński
    Kondo effect of a cobalt adatom on a zigzag graphene nanoribbon
    Physical Review B 89, 035424, 2014
  8. M. Inglot, V.K. Dugaev, E.Ya. Sherman, J. Barnaś
    Optical spin injection in graphene with Rashba spin-orbit interaction
    Phys.  Rev. B 89, 155411 (2014)
  9. W. Skowroński, M. Frankowski, J. Wrona, T. Stobiecki, P. Ogrodnik, J. Barnaś
    Spin-torque diode radio-frequency detector with voltage tuned resonance
    Applied Physics Letters  105, 072409 (2014)

2013

  1. T. Szczepański, V.K. Dugaev, J. Barnaś, J.P. Cascales, F.G. Aliev
    Shot noise in magnetic double-barrier tunnel junctions
    Physical Review B 87, 155406, (2013)
  2. S. Krompiewski
    The effect of electrode/grapheme interfaces and dephasing processes on conductance and giant magnetoresistance
    Physica Status Solidi – Rapid Research Letters 7, 542, (2013)
  3. P. Balaz, M. Zwierzycki, J. Barnaś
    Spin-transfer torque and current-induced switching in metallic spin valves with perpendicular polarizers
    Physical Review B 88, 094422, (2013)
  4. S. Lipiński, D. Krychowski
    Kondo effect near the Van Hove singularity in biased bilayer graphene
    Journal of the Korean Physical Society 62, 1440, (2013)
  5. K.P. Wójcik, I. Weymann, J. Barnaś
    Asymmetry-induced effects in Kondo quantum dots coupled to ferromagnetic leads
    J. Phys.: Condens. Matter 25 075301 (2013)
  6. A. Dyrdał,  M. Inglot, V.K. Dugaev, J. Barnaś
    Thermally induced spin polarization of a two-dimensional electron gas
    Physical Review B 87, 245309 (2013)
  7. M. Misiorny, J. Barnaś
    Effects of Transverse Magnetic Anisotropy on Current-Induced Spin Switching
    Phys. Rev. Letters 111, 046603 (2013)

2012

  1. I. Weymann, S. Krompiewski, J. Barnaś
    Spin-dependent transport through graphene quantum dots
    Journal of Nanoscience and Nanotechnology Vol. 12, 7525, 2012
  2. S. Krompiewski
    Effect of the attachment of ferromagnetic contacts on the conductivity and giant magnetoresistance of graphene nanoribbons
    Nanotechnology 23, 135203, 2012
  3. M.W. Haverkort, M. Zwierzycki, O.K. Andersen                                             
    Multiplet ligand-field theory using Wannier orbitals
    Physical Review B 85, 165113, 2012
  4. I. Weymann, J. Barnaś, S. Krompiewski
    Manifestation of the shape and edge effects in spin-resolved transport through graphene quantum dots
    Physical Review B 85, 205306, 2012
  5. S. Lipiński, D. Krychowski
    Two Kondo Impurities in Armchair Graphene Nanoribbon
    Acta Physica Polonica A, 121, No. 5-6, 1063, 2012
  6. A. Dyrdał, J. Barnaś
    Intrinsic Spin Hall and Spin Nernst Effects in Single-Layer Graphene: Tight-Binding vs. Effective Model
    Acta Physica Polonica A, 121, No. 5-6, 1198, 2012
  7. S. Krompiewski
    Graphene Nanoribbons with End- and Side-Contacted Electrodes
    Acta Physica Polonica A, 121, No. 5-6, 1216, 2012
  8. A. Dyrdał, J. Barnaś
    Intrinsic contribution to spin Hall and spin Nernst effects in a bilayer graphene
    J. Phys.: Condens. Matter 24, 275302, 2012
  9. P. Baláz, V.K. Dugaev, J. Barnaś
    Spin-transfer torque in a thick Neel domain wall
    Physical Review B 85, 024416, 2012
  10. K. Bocian, W. Rudziński, J. Barnaś
    Andreev reflection in transport through a quantum dot coupled to ferromagnetic and superconducting electrodes
    Acta Physica Polonica A 121, 1201, 2012
  11. A. Dyrdał, J. Barnaś
    Intrinsic spin Hall effect in silicene: transition from spin Hall to normal insulator
    Phys. Status Solidi RRL 6, 340, 2012
  12. J.P. Cascales, D. Herranz, F.G. Aliev, T. Szczepański, V.K. Dugaev, J. Barnaś, A. Duluard, M. Hehn, C. Tiusan
    Controlling Shot Noise in Double-Barrier Magnetic Tunnel Junctions
    Physical  Review Letters 109, 066601, 2012

2011

  1. M. Falkowski, A. Kowalczyk, T. Toliński, D. Krychowski
    Magnetoresistivity of Ce(1-x)La(x)Cu(4)Al compounds
    Intermetallics 19, p.433-436 (2011)
  2. V.I. Ivanov, V.K. Dugaev, E.Ya. Sherman, J. Barnaś
    Nonlinear spin Hall effect in GaAs (110) quantum wells,
    Physical Review B 84, 085326 (2011)
  3. P. Balaz, J. Barnaś
    Current-induced dynamics of composite free layers with antiferromagnetic interlayer exchange coupling,
    Physical Review B 83, 104422 (2011)
  4. P. Ogrodnik, M. Wilczyński, J. Barnaś, R. Świrkowicz
    Magnetization dynamics in a magnetic tunnel junction due to spin transfer torque in the presence of interlayer exchange coupling,
    IEEE Transactions on Magnetics 47, 1627 (2011)
  5. M. Misiorny, I. Weymann, J. Barnaś
    Influence of magnetic anisotropy on the Kondo effect and spin-polarized transport through magnetic molecules, adatoms and quantum dots,
    Physical Review B 84, 035445 (2011)
  6. M. Misiorny, I. Weymann, J. Barnaś
    Interplay of the Kondo effect and spin-polarized transport in nanoscopic systems with uniaxial magnetic anisotropy,
    Journal of Applied Physics 109, 07C732 (2011)
  7. M. Misiorny, I. Weymann, J. Barnaś
    Interplay of the Kondo effect and spin-polarized transport in magnetic molecules, adatoms and quantum dots,
    Physical Review Letters 106, 126602 (2011)
  8. S. Krompiewski
    Remarks on theoretical modelling of spin-dependent electronic transport in carbon nanotubes and graphene
    Cent. Eur. J. Phys. 9(2), 369, 2011
  9. S. Krompiewski
    Electronic transport through side-contacted graphene nanoribbons: effects of overlap, aspect ratio and orientation
    Nanotechnology 22, 445201, 2011
  10. I. Weymann, B.R. Bułka, J. Barnaś
    Dark states in transport through triple quantum dots: the role of cotunneling.
    Physical Review B 83, 195302, 2011
  11. V.K. Dugaev, E.Ya. Sherman, J. Barnaś
    Spin dephasing and pumping in graphene due to random spin-orbit interaction.
    Physical Review B 83, 085306, 2011

2010

  1. S. Krompiewski
    Spin-polarized transport in graphene nanoribbons with one paramagnetic lead and one ferromagnetic lead.
    Semiconductor Science and Technology 25, 085011, 2010
  2. D. Herranz, F.G. Aliev, C. Tiusan, M. Hehn, V.K. Dugaev, J. Barnaś
    Tunneling in double barrier junctions with ‘hot spots’.
    Physical Review Letters 105, 047207, 2010
  3. R. Guerrero, F.G. Aliev, R. Villar, T. Santos, J. Moodera, V.K. Dugaev, J. Barnaś
    Conductance in Co/Al2O3/Si/Al2O3 permalloy with asymmetrically doped barrier.
    Physical Review B 81, 014404, 2010
  4. E. Jaromirska, P. Balaz, L. Lopez Diaz, J. Barnaś
    Computational study of microwave oscillations in nonstandard spin valves in the diffusive   transport limit.
    Physical Review B 81, 014408, 2010
  5. P. Ogrodnik, M. Wilczyński, R. Świrkowicz, J. Barnaś
    Spin transfer torque and magnetic dynamics in tunnel junctions.
    Physical Review B 82, 134412, 2010
  6. V.K. Dugaev, M. Inglot, E.Ya. Sherman, J. Barnaś
    Robust impurity-scattering spin Hall effect in a two-dimensional electron gas.
    Physical Review B  82, 121310 (2010)
  7. S. Lipiński, D. Krychowski
    Spin-polarized current and shot noise in a carbon nanotube quantum dot in the Kondo regime.
    Physical Review B 81, 115327, 2010
  8. P.P. Horley, V.R. Vieira, P.M. Gorley, V.K. Dugaev, J. Barnaś
    Synchronization of macrospins arranged into a linear chain.
    Journal of Magnetism and Magnetic Materials 322, 1434 (2010)
  9. P.P. Horley, V.R. Vieira, P.M. Gorley, V.K. Dugaev, J. Berakdar, J. Barnaś
    Magnetization reversal by a single pulse of magnetic field or spin-polarized current.
    Journal of Magnetism and Magnetic Materials 322, 1373 (2010)
  10. M. Misiorny, J. Barnaś
    Current-induced magnetic switching of an arbitrary oriented single-molecule magnet in   the cotunneling regime.
    Journal of Magnetism and Magnetic Materials 322, 1265-1268, 2010
  11. M. Misiorny, I. Weymann, J. Barnaś
    Spin diode behaviour in transport through single-molecule magnets.
    EPL 89, 18003, 2010
  12. D. Krychowski, S. Lipiński
    Spin-dependent transport through SU(4) Kondo dot in the presence of spin-flip processes.
    Acta Physica Polonica A 118, 955, 2010
  13. M. Zwierzycki, S. Krompiewski
    Ab initio study of the edge states of graphene nanoribbons in the presence of electrodes.
    Acta Physica Polonica A 118, 856, 2010
  14. S. Krompiewski
    Spin-sensitive conductance in magnetically contacted graphene flakes.
    Acta Physica Polonica A 118, 835, 2010

2009

  1. M. Misiorny, J. Barnaś
    Current-induced switchning of a single magnetic molecule with an arbitrary orientation of the magentic easy axis.
    Solid State Sciences 11, 772-777, 2009
  2. M. Misiorny, J. Barnaś
    Switching of molecular magnets.
    Physica Status Solidi B 246, No. 4, 695-715, 2009
  3. I. Weymann, J.  Barnaś
    Negative tunnel magnetoresistance and differential conductance in transport through double quantum dots.
    Physical Review B 80, 165333 (2009)
  4. M. Wierzbicki, J.  Barnaś
    Thermoelectric effects in transport through quantum dots attached to ferromagnetic leads with non-collinear magnetic moments.
    Physical Review B 80, 194409 (2009)
  5. V.K. Dugaev, J. Barnaś
    Spin Hall effect in a system of Dirac fermions in the honeycomb lattice with  intrinsic and Rashba  spin-orbit interaction.
    Phys. Rev. B. 80, No. 15. (2009), 155444
  6. I. Weymann, J. Barnaś
    Spin effects in transport through single-molecule magnets in the sequential and cotunneling regimes.
    Physical Review B, 79, 224420, 2009
  7. V.K. Dugaev, E. Ya. Sherman, V. I. Ivanov, J. Barnaś
    Spin relaxation and combined resonance in two-dimensional electron systems with spin-orbit disorder.
    Physical Review B, 80, 081301-1-4, 2009
  8. S. Krompiewski
    Theoretical studies of spin-dependent electronic transport in ferromagnetically contacted graphene flakes.
    Physical Review B 80, 075433, 2009
  9. M. Gmitra, J.  Barnaś
    Current-induced dynamics in non-collinear dual spin-valves.
    Physical Review B 80, 174404 (2009)
  10. M. Gmitra, J. Barnaś
    Current-pulse-induced magnetic switching in standard and nonstardand spin-valves: theory and numerical analysis.
    Physical Review B 79, 144510, 2009
  11. P. Horley, V.R.Vieira, P. Gorley, J.G.Hernández, V.K. Dugaev, J. Barnaś
    Ultra-fast ballistic magnetization reversal triggered by a single magnetic field pulse.
    Journal of Physics D: Applied Physics 42 (2009) 245007
  12. J. Barnaś, M. Wilczyński
    Transport through a quantum dot subject to spin charge bias.
    Journal of Magnetism and Magnetic Materials 321, 2414-2420, 2009
  13. P. Balzaz, L. Lopez Diaz, J. Barnaś
    Magnetization dynamice In nanopillars In the diffusivs transport regime: Macrospin versus micromagnetic analysis.
    Journal of Applied Physics 106, 113909 (2009)
  14. V.K. Dugaev, J. Barnaś
    Spin Hall effect in IV-VI semiconductors.
    EPL A Journal Exploring the Frontiers of Physics 85, 67004, 2009
  15. S. Krompiewski
    Ab initio analysis of a quantum dot induced by a local external potential in a semiconducting carbon nanotube.
    Acta Physica Polonica A, Vol. 115, No. 1, 387-389, 2009
  16. S. Krompiewski
    Comparative studies on giant magnetoresistance in carbon nanotubes and graphene nanoribbons with ferromagnetic contacts.
    Acta Physica Polonica A, Vol. 115, No. 1, 319-321, 2009
  17. S. Krompiewski, J. Barnaś
    Transport through single-wall carbon nanotubes weakly coupled to external leads.
    Acta Physica Polonica A, Vol. 115, No. 1, 296-298, 2009
  18. D. Krychowski, S. Lipiński
    Kondo effect in carbon nanotube quantum dot in a magnetic field.
    Acta Physica Polonica A, Vol. 115, No. 1, 293-295, 2009
  19. V.K. Dugaev, J. Barnaś, B. Brodowska, W. Dobrowolski
    Anomalous Hall effect in IV-VI semiconductors.
    Acta Physica Polonica A, Vol. 115, No. 1, 287-289, 2009
  20. M. Gmitra, J. Barnaś
    Current-pulse-induced switching of asymmetric spin valves.
    Acta Physica Polonica A, Vol. 115, No. 1, 278-280, 2009
  21. M. Wilczyński, J. Barnaś
    Phono-assisted Kondo resonance in spin-dependent transport through a quantum dot.
    Acta Physica Polonica A, Vol. 115, No. 1, 272-274, 2009
  22. R. Świrkowicz, J. Barnaś
    Spin torque in double planar tunnel junctions.
    Acta Physica Polonica A, Vol. 115, No. 1, 269-271, 2009
  23. M. Szorcz, B. Susła, M. Wawrzyniak, S. Lipiński, B. Idzikowski
    Conductance quantization in the melt-spun cubic RCu5 (R = Gd, Ho, Lu) nanowires.
    Acta Physica Polonica A, Vol. 115, No. 1, 165-167, 2009
  24. M. Zwierzycki, O.K. Andersen
    The overlapping muffin-tin approximation.
    Acta Physica Polonica A, Vol. 115, No. 1, 64-68, 2009

2008

  1. T. Kostyrko, S. Krompiewski
    A model of a tunable quantum dot in a semiconducting carbon nanotube.
    Semiconductor Science and Technology 23, 085024, 2008
  2. A. Dryndal, V.K. Dugayev, J. Barnaś
    Anomalous Hall efect in IV-VI magnetic semiconductors.
    Physical Review B 78, 245208, 2008
  3. V.M. Karpan, P.A. Khomyakov, A.A.Starikov, G. Giovannetti, M. Zwierzycki, M. Talanana, G. Brocks, J. von den Brink, P.J. Kelly
    Theoretical prediction of perfect spin filtering at interfaces between close-packed surfaces of Ni or Co and graphite or graphene.
    Physical Review B 78, 195419, 2008
  4. P. Trocha, J. Barnaś
    Kondo-Dicke resonances in electronic transport through triple quantum dots.
    Physical Review B 78, 075424, 2008
  5. M. Misiorny, J. Barnaś
    Effects of intrinsic spin-relaxation in molecular magnets on current-induced magnetic switchning.
    Physical Review B 77, 172414, 2008
  6. P.P. Horley, V.R. Vieira, P.M. Gorley, V.K. Dugaev, J. Berakdar, J. Barnaś
    Influence of a periodic magnetic field and spin-polarized current on the magnetic dynamics of a monodomain ferromagnet.
    Physical Review B 78, 054417, 2008
  7. I. Weymann, J. Barnaś, S. Krompiewski
    Transport through single-wall metallic carbon nanotubes in the cotunneling regime.
    Physical Review B 78, 035422, 2008
  8. P.P. Horley, V.R. Vieira, P.M. Gorley, V.K. Dugaev, J. Barnaś
    Current-induced dynamics of a monodomain ferromagnet in an external magnetic field applied in easy magnetic plane: macrospin model.
    Physical Review B 77, 094427, 2008
  9. I. Weymann, J. Barnaś
    Shot noise and tunnel magnetoresistance in multilevel quantum dots: effects of cotunneling.
    Physical Review B 77, 054434, 2008
  10. M. Wilczyński, J. Barnaś, R. Świrkowicz
    Free-electron model of current-induced spin-transfer torque in magnetic tunnel junctions.
    Physical Review B 77, 054434, 2008
  11. M. Zwierzycki, P. A. Khomyakov, A. A. Starikov, K. Xia, M. Talanana, P. X. Xu, V. M. Karpan, I. Marushchenko, I. Turek, G. E. W. Bauer, G. Brocks, P. J. Kelly
    Calculating scattering matrices by wave function matching.
    physica status solidi (b) 245, 623-640, 2008
  12. S. Krompiewski, V.K. Dugaev, J. Barnaś
    Decoherence resonances in carbon nanotubes.
    Physica E 40, 2614-2617, 2008
  13. J. Barnaś, I. Weymann
    Spin effects in single-electron tunneling.
    Journal of Physics: Condensed Matter 20, 423202, 2008
  14. R. Świrkowicz, M. Wilczyński, J. Barnaś
    The Kondo effect in quantum dots coupled to ferromagnetic leads with noncollinear magnetizations: effects due to electron – phonon coupling.
    Journal of Physics: Condensed Matter 20, 255219, 2008
  15. P. Trocha, J. Barnaś
    Dicke-like effect in spin-polarized transport through coupled quantum dots.
    Journal of Physics: Condensed Matter 20, 125220, 2008
  16. J. Barnaś, M. Gmitra, M. Misiorny, V.K. Dugaev, H.W. Kunert
    Current-induced magnetic switching and dynamics in spin valves.
    Journal of Non-Crystalline Solids 354, 4181-4185, 2008
  17. J. Barnaś
    Dynamics of current-induced magnetic switchning of a single-molecule magnet.
    IEEE Transactions on Magnetics Vol. 44, No. 11, 2523-2526, 2008
  18. I. Weymann, J. Barnaś
    Spin diode based on a single-walled carbon nanotube.
    Applied Physics Letters 92, 003127, 2008
  19. S. Krompiewski
    Theoretical studies of tunnel magnetoresistance and shot noise in a Schottky-Barrier carbon nanotube transistor with ferromagnetic contacts.
    Acta Physica Polonica A Vol. 113, No. 1, 591-594, 2008
  20. R. Świrkowicz, M. Wawrzyniak, J. Barnaś, M. Wilczyński
    Electronic transport through a quantum dot coupled to non-collinear ferromagnetic electrodes: the Kondo regime.
    Acta Physica Polonica A Vol. 113, No. 1, 565-568, 2008
  21. S. Lipiński
    Boson-induced orbital Kondo effect.
    Acta Physica Polonica A Vol. 113, No. 1, 549-552, 2008
  22. D. Krychowski, S. Lipiński
    Tunnel magnetoresistance in carbon nanotube quantum dot.
    Acta Physica Polonica A Vol. 113, No. 1, 545-548, 2008
  23. D. Krychowski, S. Lipiński
    Thermoelectric effects in carbon nanotube quantum dot in the Kondo regime.
    Acta Physica Polonica A Vol. 113, No. 2, 645-649, 2008
  24. M. Wilczyński, J. Barnaś, R. Świrkowicz
    Spin torque in semiconductors single planar tunnel junctions.
    Acta Physica Polonica A Vol. 113, No. 1, 35-38, 2008
  25. M. Gmitra, J. Barnaś, D. Horvath
    Thermally assisted current-driven dynamics in asymmetric spin valves.
    Acta Physica Polonica A Vol. 113, No. 1, 31-34, 2008
  26. M. Wawrzyniak, R. Świrkowicz, M. Wilczyński, J. Barnaś
    Poor man’s scaling and green function analysis of the Kondo anomaly in single-level quantum dots.
    Acta Physica Polonica A Vol. 113, No. 1, 553-556, 2008

2007

  1. V. M. Karpan, G. Giovannetti, P. A. Khomyakov, M. Talana, A. A. Starikov, M. Zwierzycki, J. Van den Brink, G. Brocks, P.J. Kelly
    Graphite and graphene as perfect spin filters.
    Physical Review Letters 99, 176602-1 do 176602-4, 2007
  2. P. Trocha, J. Barnaś
    Quantum interference and Coulomb correlation effects in spin-polarized transport through two quantum dots.
    Physical Review B 76, 165432 (2007)
  3. I. Weymann, J. Barnaś, S. Krompiewski
    Theory of shot noise in single-walled metallic carbon nanotubes weakly coupled to nonmagnetic and ferromagnetic leads.
    Physical Review B 76, 155408-1 do 155408-9, 2007
  4. S. Krompiewski, V.K. Dugaev, J. Barnaś
    Resonant decoherence due to electron-electron interactions in carbon nanotubes.
    Physical Review B 75, 195422, 2007
  5. M. Misiorny, J. Barnaś
    Magnetic switching of a single molecular magnet due to spin-polarized current.
    Physical Review B 75, 134425, 2007
  6. I. Weymann, J. Barnaś
    Cotunneling through quantum dots coupled to magnetic leads: zero-bias anomaly for noncollinear magnetic configurations.
    Physical Review B 75, 155308, 2007
  7. J. Barnaś
    Spin polarized transport through two coupled quantum dots.
    physica status solidi (b) 244, No 7, 2553-2558 (2007)
  8. J. Barnaś, M. Gmitra, M. Misiorny, V. Dugaev
    Current-induced switching in spin-valve structures.
    physica status solidi (b) 244, 2304 (2007)
  9. M. Misiorny, J. Barnaś
    Current-induced switching of a single-molecule magnet with an arbitrary oriented easy axis.
    Materials Science – Poland Vol. 25, No. 4, 1235-1241, 2007
  10. S. Krompiewski
    Modeling a Schottky-barrier carbon nanotube field-effect transistor with ferromagnetic contacts.
    Nanotechnology 18, 485708-1 do 485708-4, 2007
  11. M. Gmitra, J. Barnaś, D. Horvath
    Precessional modes due to spin-transfer in spin-valve nanopillars.
    Materials Science - Poland Vol. 25, No. 2, 571-576, 2007
  12. P. Trocha, J. Barnaś
    Interference and Coulomb correlation effects in spin-polarized transport through coupled quantum dots.
    Materials Science - Poland Vol. 25, No. 2, 545-552, 2007
  13. M. Misiorny, J. Barnaś
    Spin reversal processes in a single molecular magnet between two ferromagnetic leads.
    Materials Science - Poland Vol. 25, No. 2, 505-511, 2007
  14. J. Wiśniewska, J. Barnaś
    Electronic transport in a ferromagnetic single-electron transistor with non-collinear magnetizations in the co-tunnelling regime.
    Materials Science - Poland Vol. 25, No. 2, 465-472, 2007
  15. M. Kowalik, I. Weymann, J. Barnaś
    Current-induced torque in ferromagnetic single-electron devices in the limits of the fast and slow spin relaxation.
    Materials Science - Poland Vol. 25, No. 2, 453-458, 2007
  16. D. Krychowski, S. Lipiński
    Aharonov-Bohm interferometry with the T-shaped capacitively coupled quantum dots in the orbital Kondo regime.
    Materials Science - Poland Vol. 25, No. 2, 436-439, 2007
  17. B. Susła, M. Wawrzyniak, J. Barnaś, W. Nawrocki
    Conductance quantization in magnetic and nonmagnetic metallic nanowires.
    Materials Science - Poland Vol. 25, No. 2, 305-312, 2007
  18. P.M. Gorley, V.K. Dugaev, J. Barnaś, P.P. Horley, O.M. Mysliuk
    Spin polarization and relaxation in a semiconductor with impurity absorption of circularly polarized light.
    Journal of Physics: Condensed Matter 19, 266205 (2007)
  19. I. Weymann, J. Barnaś
    Transport through two-level quantum dots weakly coupled to ferromagnetic leads.
    Journal of Physics: Condensed Matter 19, 096208, 2007
  20. S. Lipiński, D. Krychowski
    Coherent transport through T-shaped electrostatically coupled quantum dots.
    Journal of Magnetism and Magnetic Materials 310, 2423-2424, 2007
  21. S. Krompiewski, G. Cuniberti
    Ballistic magnetoresistance in small-size carbon nanotube devices.
    Journal of Magnetism and Magnetic Materials 310, 2439-2441, 2007
  22. D. Krychowski, S. Lipiński, S. Krompiewski
    Spin dependent transport through a carbon nanotube quantum dot in magnetic field.
    Journal of Alloys and Compounds 442, 379-381, 2007
  23. V.K. Dugaev, V.R. Vieira, P.D. Sacramento, J. Barnaś, M.A.N. Araujo, J. Berakdar
    Current-induced spin torque on a domain wall in a magnetic nanowire
    International Journal Modern Physics B 21, 1659 (2007)
  24. M. Misiorny, J. Barnaś
    Quantum tunneling of magnetization in single molecular magnets coupled to ferromagnetic reservoirs.
    Europhysics Letters Vol. 78, No. 2, 27003, 2007
  25. P. Trocha, J. Barnaś
    Coherent transport through systems of coupled quantum dots.
    Acta Physica Polonica 112, 473 (2007)
  26. M. Gmitra, J. Barnaś
    Current-driven magnetoresistance oscillations in asymmetric spin valves.
    Acta Physica Polonica A Vol. 112, No. 6, 1267-1270, 2007

2006

  1. S. Krompiewski
    Theoretical studies of spin-dependent electrical transport through carbon nanotubes.
    Semiconductor Science and Technology 21, S96-S102, 2006
  2. S. Lipiński, D. Krychowski
    Orbital Kondo effect and spin polarized transport through quantum dots.
    physica status solidi (b) 243, No. 1, 206-209, 2006
  3. M. Wilczyński, J. Barnaś, R. Świrkowicz
    The influence of magnetic configuration on tunneling current in double tunnel junctions with ferromagnetic electrodes.
    phys. stat. sol. (b) 243, No. 1, 231-234, 2006
  4. V.R. Vieira, V.K. Dugaev, P.D. Sacramento, J. Barnaś, M.A.N. Araujo, J. Berakdar
    Spin accumulation, spin currents, and torque, in the problem of motion of a sharp domain wall in magnetic nanowires.
    phys. stat. sol. (b) 243, No. 1, 193-196, 2006
  5. M. Kowalik, J. Wiśniewska, J. Barnaś
    Torque induced by spin-polarized current in ferromagnetic single-electron transistors.
    phys. stat. sol. (b) 243, No. 1, 243-246, 2006
  6. M. Gmitra, D. Horvath, M. Wawrzyniak, J. Barnaś
    Current-induced spin dynamics in spin-valve structures.
    phys. stat. sol. (b) 243, No. 1, 219-222, 2006
  7. S. Krompiewski, N. Nemec, G. Cuniberti
    Spin transport in disordered single-wall carbon nanotubes contacted to ferromagnetic leads.
    phys. stat. sol. (b) 243, No. 1, 179-182, 2006
  8. P. Chudziński, S. Krompiewski
    Giant magnetoresistance effect in quantum nano-scale wires.
    physica status solidi (b) 243, No. 1, 214-218, 2006
  9. M. Gmitra, J. Barnaś
    Current-driven destabilization of both collinear configurations in asymmetric spin valves.
    Physical Review Letters 96, 207205, 2006
  10. V.K. Dugaev, J. Berakdar, J. Barnaś
    Tunable conductance of magnetic nanowires with structured domain walls.
    Physical Review Letters 96, 047208, 2006
  11. M.A.N. Araujo, V.K. Dugaev, V.R. Vieira, J. Berakdar, J. Barnaś
    Transmission of correlated electrons through sharp domain walls in magnetic nanowires: a renormalization group approach.
    Physical Review B, 74, 224429, 2006
  12. V.K. Dugaev, V.I. Litvinov, J. Barnaś
    Exchange interaction of magnetic imurities in graphene.
    Physical Review B, 74, 224438, 2006
  13. I. Weyman, J. Barnaś
    Effect of intrinsic spin relaxation on the spin-dependent cotunneling transport through quantum dots.
    Physical Review B 73, 205309, 2006
  14. I. Weymann, J. Barnaś
    Negative differential conductance and magnetoresistance oscillations due to spin accumulation in ferromagnetic double-island devices.
    Physical Review B 73, 033409, 2006
  15. V.K. Dugaev, V.R. Vieira, P.D. Sacramento, J. Barnaś, M.A.N. Araujo, J. Berakdar
    Current-induced motion of a domain wall in a magnetic nanowire.
    Physical Review B 74, 054403-1 do054403-12, 2006
  16. S. Lipiński, D. Krychowski
    Double dot Kondo spin filter.
    Physica B 378-380, 953-955, 2006-08-23
  17. I. Weymann, J. Barnaś
    Cotunneling through a magnetic quantum dots coupled to ferromagnetic leads with noncollinear magnetizations.
    Physica B 378-380, 945-946, 2006
  18. I. Weymann, J. Barnaś
    Influence of intrinsic spin-flip processes on spin-polarized transport through quantum dots in the cotunneling regime.
    Physica B 378-380, 942-944, 2006
  19. R. Świrkowicz, W. Rudziński, M. Wilczyński, M. Wawrzyniak, J. Barnaś
    Kondo effect in quantum dots coupled to ferromagnetic leads with noncollinear magnetizations.
    Physica B 378-380, 940-941, 2006
  20. M. Kowalik, J. Wiśniewska, J. Barnaś
    Torque due to spin-polarized current in ferromagnetic single-electron transistors.
    Materials Science – Poland, Vol. 24, No. 3, 815-820, 2006
  21. M. Wawrzyniak, M. Gmitra, J. Barnaś
    Resonant tunneling through a single level quantum dot attached to ferromagnetic leads with non-collinear magnetizations.
    Materials Science – Poland, Vol. 24, No. 3, 698-700, 2006
  22. J. Wiśniewska, M. Kowalik, J. Barnaś
    Transport characteristic of ferromagnetic single-electron transistors with non-collinear magnetizations.
    Materials Science – Poland, Vol. 24, No. 3, 761-767, 2006
  23. S. Krompiewski
    Electronic transport through carbon nanotubes with ferromagnetic electrodes or in magnetic fields.
    Materials Science – Poland Vol. 24, No. 3, 649-657, 2006
  24. S. Lipiński
    Spin and orbital Kondo effect in electrostatically coupled quantum dots.
    Materials Science – Poland Vol. 24, No. 3, 690-693, 2006
  25. J. Barnaś, I. Weymann, J. Wiśniewska, M. Kowalik, H.W. Kunert
    Single- and double-island ferromagnetic single-electron transistors.
    Materials Science and Engineering B 126, 275-278, 2006
  26. J. Barnaś, A. Fert, M. Gmitra, I. Weymann, V.K. Dugaev
    Macroscopic description of spin transfer torque.
    Materials Science and Engineering B 126, 271-274, 2006
  27. R. Świrkowicz, M. Wilczyński, J. Barnaś
    Spin-polarized transport through a single-level quantum dot in the Kondo regime.
    Journal of Physics: Condensed Matter 18, 2291-2304, 2006
  28. M. Wawrzyniak, G. Gmitra, J. Barnaś
    Influence of interface spin-flip scattering on spin accumulation and spin currents in magnetic multilayers with collinear magnetizations.
    Journal of Applied Physics 99, 023905, 2006
  29. M. Wawrzyniak, M. Gmitra, J. Barnaś
    Spin dependent tunneling through a quantum dot attached to ferromagnetic electrodes with non-collinear magnetizations.
    Journal of Alloys and Compounds 423, 264-266, 2006
  30. R. Świrkowicz, M. Wilczyński, J. Barnaś, W. Rudziński
    Electron transport through nanoscopic spin valves.
    Journal of Alloys and Compounds 423, 244-247, 2006
  31. S. Lipiński, D. Krychowski
    Kondo effect and spin filtering in coupled quantum dots.
    Journal of Alloys and Compounds 423, 215-219, 2006
  32. M. Gmitra, J. Barnaś, D. Horvath
    Spin dynamics due to spin-transfer in magnetic spin valves.
    Journal of Alloys and Compounds 423, 194-196, 2006
  33. M. Gmita, J. Barnaś
    Current-induced dynamics in asymmetric spin valves.
    Applied Magnetic Letters 89, 223121, 2006

2005

  1. W. Rudziński, J. Barnaś, R. Świrkowicz, M. Wilczyński
    Spin precession in spin-polarized transport through an interacting quantum dot.
    physica status solidi (b) 242, No. 2, 2005, 342-346
  2. S. Krompiewski
    Spin-polarized transport through carbon nanotubes.
    physica status solidi (b) 242, No. 2, 2005, 226-233
  3. J. Barnaś, R. Świrkowicz, M. Wilczyński, W. Rudziński
    Spin valve effect in electronic transport through quantum dots.
    physica status solidi ©, No. 12, 2004, 3339-3342
  4. I. Weymann, J. König, J. Martinek, J. Barnaś, G. Schön
    Tunnel magnetoresistance of quantum dots coupled to ferromagnetic leads in the sequential and cotunneling regimes.
    Physical Review B 72, 115334-1 do 115334-13, 2005
  5. J. Martinek, M. Sindel, L. Borda, J. Barnaś, R. Bulla, J. König, G. Schön, S. Maekawa, J. von Delft
    Gate-controlled spin splitting in quantum dots with ferromagnetic leads in the Kondo regime.
    Physical Review B 72, 121302(R)-1 do 121302(R)-4, 2005
  6. J. Barnaś, A. Fert, M. Gmitra, I. Weymann, V.K. Dugaev
    From giant magnetoresistance to current-induced switching by spin transfer.
    Physical Review B 72, 024426-1 do 024426-12, 2005
  7. I. Weymann, J. Barnaś, J. König, J. Martinek, G. Schön
    Zero-bias anomaly in cotunneling transport through quantum-dot spin valves.
    Physical Review B 72, 113301-1 do 113301-4, 2005
  8. W. Rudziński, J. Barnaś, R. Świrkowicz, M. Wilczyński
    Spin effects in electron tunneling through a quantum dot coupled to noncollineary polarized ferromagnetic leads.
    Physical Review B 71, 2005, 205307-1 do 20530710
  9. S. Lipiński, B.R. Bułka, D. Krychowski
    Spin-dependent transport through a double dot system.
    Materials Science – Poland, Vol. 22, No. 4, 2004, 513-522
  10. M. Wawrzyniak, J. Barnaś
    Influence of interface spin-flip processes on spin accumulation and spin currents in magnetic multilayes.
    Materials Science – Poland, Vol. 22, No. 4, 2004, 537-544
  11. J. Wiśniewska, I. Weymann, J. Barnaś
    Spin-dependent transport in ferromagnetic single-electron transistors with non-collinear magnetizations.
    Materials Science – Poland, Vol. 22, No. 4, 2004, 461-467
  12. M. Wilczyński, R. Świrkowicz, W. Rudziński, J. Barnaś, V. Dugaev
    Quantum dots attached to ferromagnetic leads: possibility of new spintronic devices.
    Journal of Magnetism and Magnetic Materials 290-291, 209-212, 2005
  13. W. Rudziński, R. Świrkowicz, J. Barnaś, M. Wilczyński
    Transport through a single discrete level for non-collinear magnetic polarizations of the electron reservoirs
    Journal of Magnetism and Magnetic Materials 294, 2005, 1-9
  14. V.K. Dugaev, J. Barnaś
    Classical description of current-induced spin-transfer torque in multilayer structures.
    Journal of Applied Physics 97, 2005, 023902-1 do 023902-6
  15. I. Weymann, J. Barnaś
    Cotunneling through a quantum dot coupled to ferromagnetic leads with noncollinear magnetizations.
    European Physica Journal B 46, 289-299, 2005
  16. R. Świrkowicz, M. Wilczyński, J. Barnaś
    Non-equilibrium Kondo effect in electronic transport through quantum dots.
    Czechoslovak Journal of Physics, Vol. 54, 2004, Suppl. D, D615-D618

Podkategorie