Zakład Fizyki Niskich Temperatur, Materiałów i Technologii Kwantowych (ZN4)

Wyposażenie

Wyposażenie

  • Spektrometr elektronowego rezonansu paramagnetycznego (EPR) firmy Radiopan (typ SE/X), pracujący w pasmie mikrofalowym X (9,4 GHz), wyposażony w miernik częstotliwości MCM 101, magnetometr jądrowy JTM-147 oraz kriostat przepływowy Oxford (typ ESR 900) z zakresem temperatur od 4 do 300 K
    Spektrometr elektronowego rezonansu paramagnetycznego
  • Stanowisko badawcze do pomiarów dielektrycznych, podatności magnetycznej i zjawisk transportu: przewodnictwa elektrycznego i cieplnego w zakresie temperatur od 0,3 do 300 K. W skład stanowiska wchodzą:
    • kriostat z izotopem helu He3 (0,3 - 300 K)
    • kriostat przepływowy He4 (3,5 - 300 K)
    • AVS-47 Resistance Bridge, Picowatt RV-Elektronikka OY, mostek z ośmioma kanałami pomiarowymi oporu elektrycznego w zakresie od 0,0001 Ω do 2 MΩ, w zmiennym polu elektrycznym o częstotliwości 12,5 Hz i mocą pomiarową 10-12 W
    • TS-530A Temperature Controller Picowatt RV-Elektronikka OY, regulator temperatury do regulacji temperatury w kriostacie z He3
    • Oxford Inteligent Temperature Controller ITC 503, do regulacji temperatury w kriostacie przepływowym z He4
    • Agilent E 4980A Precision LCR Meter, pracujący w zakresie od 20 Hz do 2 MHz
    • 4275A Multi-Frequency LCR Meter Hewlett-Packard, pracujacy w zakresie od 10 kHz do 10 MHz
    • 2410-C 1100 V SourceMeter Kethley
    • 6517B Electrometer/High Resistance Meter, Kethley
      Wyposażenie Wyposazenie
  • Układy do badania efektów kwantowych w nadciekłym helu o zakresie pracy od 1,5 K, w skład których wchodzi:
    • podwójny układ dewarów szklanych do badania wydajności filtrów entropowych
    • układ o pojemności 25 LHe z wymiennikiem ciepła do badania skuteczności filtrów entropowych oraz membran
  • Prototyp separatora izotopu He3 z możliwością pomiaru zawartości He3 w He4 na poziomie 10-3ppm, którym Zakład dysponuje w ramach Konsorcjum naukowego: ”IFM PAN – PGNiG SA Oddział w Odolanowie – PWr”
  • Ponadto w skład wyposażenia Zakładu wchodzą m.in.:
    • mostek cyfrowy RLC Digibridge 1689M Gen. Rad.
    • oscyloskop LeCroy WaveSurfer 422 o zakresie pomiarowym do 200 MHz
    • spektrometr Ramana NIR-FT Bruker IFS 66 FRA 106
    • mikroskop ramanowski z kriostatem helowym (sfinansowany przez Fundację Nauki Polskiej)
    • spektrometr dielektryczny Novocontrol o dostępnym zakresie częstości od 10-1 do 109 Hz oraz temperatury od 10 do 500 K
    • aparatura do badań przewodnictwa elektrycznego w zakresie częstości do 109 Hz
    • mikroskop firmy Linkam do badań optycznych w zakresie temperatur od 70 do 870 K
    • skaningowy kalorymetr różnicowy Netzsch DSC 200
    • młyn kulowy Fritsch Pulverisette 6

 

 

Badania

Obszar badawczy

Dynamika spinowa w nanomateriałach węglowych, komunikacja i kryptologia kwantowa oraz innowacyjne ferroiki w elektronice ciała stałego.

Cele badawcze

Zakład Fizyki Niskich Temperatur, Materiałów i Technologii Kwantowych prowadzi fundamentalne badania naukowe, zarówno teoretyczne jak i eksperymentalne, które dotyczą zjawisk, właściwości nanoukładów fizycznych oraz nowych materiałów, wykazujących unikalne cechy związane z efektami kwantowymi, występującymi często w obszarze niskich temperatur. Ważną aktywnością zakładu są także prace badawczo-rozwojowe w obszarze energetyki oraz ochrony przed stałymi oraz zmiennymi polami elektromagnetycznymi.

Profil badawczy

Przedmiotem badań teoretycznych są układy kropek kwantowych, kwantowo-atomowe złącza punktowe, elektronowe układy jedno- oraz dwuwymiarowe, układy hybrydowe na bazie heterostruktur półprzewodnikowych, pojedynczych molekuł, ferromagnetyków, nadprzewodników, a także układy silnie skorelowane, układy z efektem Kondo, współtunelowaniem, transportem elektrycznym zależnym od spinu, elektronowy rezonans spinowy pojedynczych atomów i kropek kwantowych. Zakład zajmuje się również kryptografią kwantową oraz prostymi protokołami kwantowymi w ramach informatyki kwantowej. Badania te prowadzone są przy wykorzystaniu zaawansowanych metod obliczeniowych, takich jak perturbacyjne techniki skalowania, metody numerycznej grupy renormalizacji (NRG) i nierównowagowych funkcji Greena, techniki diagramowe oraz modelowanie. Projektowane są również nanourządzenia elektroniczne o nowych funkcjonalnościach.

Prace eksperymentalne dotyczą metod otrzymywania różnorodnych materiałów węglowych, nadprzewodników, ferroików, multiferroików czy nanokompozytów będących przewodnikami jonowymi oraz ich właściwości fizycznych i zastosowań w obszarach spintroniki i elektroniki molekularnej.

Badania nowoczesnych materiałów węglowych takich jak grafen, tlenek grafenu GO, redukowany tlenek grafenu RGO, nanodiamenty czy nanowłókna węglowe służą poznaniu podstawowych cech tych materiałów, głównie mechanizmów przewodnictwa elektrycznego, magnetyzmu oraz występujących w nich wzbudzeń i trypletowych stanów spinowych. Wyniki badań pozwalają przewidywać oraz proponować zastosowania tych materiałów w obszarach komputerów kwantowych, spintroniki i elektroniki molekularnej przyszłości oraz możliwość ich wykorzystania w nowoczesnej energetyce (konwersja energii, superkondensatory i separacja izotopu 3He.

W przypadku rodziny materiałów ferroicznych, w tym M-heksaferrytów wykazujących ciekawe zachowania magnetyczne, których przykładem jest związek Sr(Ba)Fe12O19 oraz multiferroików o równoczesnych uporządkowaniach ładunkowych i magnetycznych, takich jak żelazian bizmutu BiFeO3, prowadzone prace mają na celu określenie optymalnych warunków ich syntezy przy użyciu metody hydrotermalnej lub mechanosyntezy, a następnie zbadanie wpływu domieszek oraz rozmiaru na ich właściwości magnetoelektryczne. Wykonywane są również badania mające na celu poznanie uporządkowań magnetycznych oraz transportu elektrycznego w nanokompozytach zawierających nanocząsteczki np. magnetytu Fe3O4 w otoczce krzemionkowej lub w matrycach kwasów organicznych.

Prowadzone prace dotyczą również poszukowań stanów polarnych w kwantowych paraelektrykach, właściwości relaksorowych w kryształach K1-xLixTaO3, w których przejście ferroelektryczne (FE) w niskich temperaturach ma charakter perkolacyjny oraz badań niskotemperaturowej fazy polarnej w monokryształach i ceramice PbZrO3, gdzie stwierdzono obecność polarnych (ferrielektrycznych) granic antyfazowych wewnątrz fazy antyferroelektrycznej.

Celem badań przewodników szybkich jonów jest poznanie mechanizmów przewodnictwa elektrycznego, przemian strukturalnych oraz uporządkowań ferroelektrycznych związków organicznych, takich jak np. nowe ferroelektryki [C(NH2)3]4X2SO4 (X=Cl, Br), czy kryształy [C(NH2)3]4Cl2SO4 i (NH4)4H2(SeO4)2. Badane jest także przewodnictwo jonowe nowych materiałów nanokompozytowych, których matrycę stanowi mikro lub nanoceluloza natomiast komponentem aktywnym są związki organiczne.

Prace badawczo-rozwojowe

Działalność badawczo-rozwojowa Zakładu dotyczmy prac związanych z energetyką, między innymi opracowania nowych metod defektoskopii kabli wysokoenergetycznych, zmian starzeniowych w materiałach ceramicznych w urządzeniach ochrony sieci przesyłowych przed przepięciami (warystory), materiałów dla technologii jądrowych i energetyki przyszłości, czyli pozyskiwania izotopu helu 3He stosowanego do detekcji promieniowania oraz syntezy termojądrowej, czy też opracowania metod ochrony przed silnymi polami elektrycznymi oraz promieniowaniem elektromagnetycznym.

Współpraca

Współpraca naukowa

  • Institute of Physics of the Czech Academy of Sciences, Praga, Republika Czeska
  • Centrum NanoBioMedyczne UAM, Poznań
  • Instytut Niskich Temperatur i Badań Strukturalnych PAN, Wrocław
  • Wydział inżynierii Materiałowej i Fizyki Technicznej, Politechnika Poznańska
  • Wydział Matematyki i Fizyki Stosowanej, Politechnika Rzeszowska
  • Wydział Elektrotechniki i Automatyki, Politechnika Gdańska
  • Wydział Mechaniczno-Energetyczny, Politechnika Wrocławska
  • Wydział Fizyki i Astronomii, Wydział Chemii, Uniwersytet im. Adama Mickiewicza, Poznań
  • Wydział Nauk Ścisłych i Technicznych, Uniwersytet Śląski w Katowicach
  • Sieć Badawcza Łukasiewicz – Instytut Metali Nieżelaznych, Gliwice
  • Institute for Condensed Matter Physics of the Ukrainian Academy of Sciences, Lwów, Ukraina
  • Institute for Problems of Materials Science Ukrainian Academy of Sciences, Kijów, Ukraina
  • Department of Physics, Ben-Gurion University of the Negev, Be’er-Sheva, Izrael
  • University of Rennes, Francja
  • Department of Physics, Montana State University, Bozeman, Stany Zjednoczone
  • Institute of Physics, Crystal Physics Division, Uniwersytet im. Adama Mickiewicza, Poznań, Polska

Konsorcja i sieci

Projekt NCBR-PIHe3 dotyczący opracowania przemysłowej metody wzbogacania helu 4He w izotop 3He realizowany jest w ramach Konsorcjum Naukowego ”IFM PAN – PGNiG SA Oddział w Odolanowie – PWr” zawiązanego przez Instytut Fizyki Molekularnej Polskiej Akademii Nauk (IFM PAN) – lidera projektu, Polskie Górnictwo Naftowe i Gazownictwo SA Oddział w Odolanowie (PGNiG SA Oddział w Odolanowie), które jest partnerem gospodarczym oraz Politechnikę Wrocławską (PWr), będącą partnerem naukowym. Projekt współfinansowany jest przez NCBiR w ramach programu INNOTECH, ścieżki programowej In-Tech i zakłada wykorzystanie kwantowego zjawiska nadciekłości oraz nowoczesnych filtrów entropowych złożonych z nanorurek, nanomateriałów lub nadprzewodników do procesu pozyskiwania niezwykle cennego izotopu 3He. W ramach prowadzonych prac zaprojektowano i zbudowano półprzemysłowy separator 3He, przetestowano efektywność szeregu różnych filtrów entropowych oraz dokonano szacunków opłacalności ekonomicznej procesu prowadzonego w istniejących już instalacjach produkujących ciekły hel. Strona projektu NCBR-PIHe3.

Projekt POIR.02.03.02-22-0006/15 Opracowanie kompozytowego materiału ekranującego pole elektromagnetyczne w wysokich i niskich częstotliwościach, którego beneficjentem była firma ADR System a partnerem naukowym Instytut Fizyki Molekularnej Polskiej Akademii Nauk. Program realizowany był w ramach Programu Operacyjnego Inteligenty Rozwój 2014-2020 Poddziałania 2.3.3 Bony na Innowacje dla MŚP. W ramach projektu opracowano technologię wytwarzania oraz zbadano właściwości nowego modyfikatora, który stanowił dodatek do już produkowanych przez firmę ADR System materiałów ekranujących stałe pola elektryczne. Uzyskano w ten sposób nowe materiały w postaci mat, folii, farb, które efektywnie ekranują stałe pole elektryczne oraz pola elektromagnetyczne wysokiej częstości (rzędu GHz), przyczyniając się do obniżenia tła promieniowania elektromagnetyczny w miejscach zamieszkania oraz pracy. Strona ADR System.

Zakład uczestniczy we współpracy z Wydziałem Politechnik Gdańskiej, której przedmiotem jest poszukiwanie nowych metod defektoskopii wysokoenergetycznych kabli przesyłowych oraz sposobów syntezy i charakteryzowania ceramik w postaci domieszkowanego tlenku cynku ZnO, które stanowią czynnik roboczy w układach ochrony sieci przesyłowych, takich jak warystory. Metodami fizycznymi badane są również procesy stażeniowe oraz procesy zachodzące pod wpływem wysokoenergetycznych przepięć w ceramice ZnO. Publikacja.

 

 

Patenty

Patenty

Efektem aktywności zakładu w sferze badawczo-rozwojowej jest uzyskanie szeregu patentów udzielonych przez Urząd Patentowy Rzeczpospolitej Polskiej, które dotyczą jednowymiarowych nanoukładów nadprzewodzących, kwantowych filtrów entropowych do separatorów helu 3He oraz przyrządów do demonstracji kwantowego przejścia helu 4He w stan nadciekły i badania układów do wzbogacania koncentracji izotopu helu 3He3 w helu 4He.

  • Sposób wytwarzania drutów ze splotów kompozytowych
    Numer uzyskanej ochrony 230430; data zgłoszenia 14.11.2014.
    Autorzy (wyróżniono autorów z Instytutu Fizyki Molekularnej PAN): dr inż. Wojciech Głuchowski, prof. dr hab. inż. Zbigniew Rdzawski, dr inż. Joanna Sobota, prof. dr hab. inż. Jerzy Stobrawa, inż. Krzysztof Marszowski, dr hab. Bartłomiej Andrzejewski, prof. dr hab. Wojciech Kempiński
    Przedmiotem wynalazku jest sposób wytwarzania drutów ze splotów kompozytowych o włóknistej i ultradrobnoziarnistej strukturze, który charakteryzuje się tym, że kompozyt uzyskiwany jest w sposób ciągły z drutu płaszczowego w trzech etapach.
    https://ewyszukiwarka.pue.uprp.gov.pl/search/pwp-details/P.410149
  • Głowica niskotemperaturowa do stabilizacji temperatur poniżej 4,2 K w układach wykorzystują-cych ciekły hel
    Numer uzyskanej ochrony 233586; data zgłoszenia 09.05.2016.
    Autorzy: prof. dr hab. Wojciech Kempiński, prof. dr hab. Zbigniew Trybuła, dr hab. Szymon Łoś, prof. dr hab. inż. Maciej Chorowski, dr hab. inż. Jarosław Poliński, mgr inż. Katarzyna Chołast, mgr inż. Andrzej Kociemba, mgr inż. Marcin Włoszczyk, mgr inż. Łukasz Wróblewski
    Przedmiotem wynalazku jest niskotemperaturowa głowica z wymiennikiem ciepła i kapilarą, umożliwiającą stabilizację temperatur poniżej 4,2 K w układach wykorzystujących ciekły hel. Zastosowanie głowicy z kapilarą ze zwiększonym oporem przepływu pozwala na chłodzenie oraz stabilizację temperatury dużej objętości ciekłego helu z optymalnym, niskim zużyciem tej cieczy, oraz zachowanie lub zwiększenie wyjściowej koncentracji izotopu helu 3He w helu 4He.
    https://ewyszukiwarka.pue.uprp.gov.pl/search/pwp-details/P.417132
  • Sposób wytwarzania kompozytów multi-włóknistych
    Numer uzyskanej ochrony 234348; data zgłoszenia 14.11.2014.
    Autorzy: dr inż. Wojciech Głuchowski, prof. dr hab. inż. Zbigniew Rdzawski, dr inż. Joanna Sobota, prof. dr hab. inż. Jerzy Stobrawa, inż. Krzysztof Marszowski, dr hab. Bartłomiej Andrzejewski, prof. dr hab. Wojciech Kempiński
    Przedmiotem wynalazku jest sposób wytwarzania kompozytów multi-włóknistych Cu-Nb, który polega na otrzymywaniu kompozytu w sposób ciągły z drutu płaszczowego w trzech etapach. Finalny produkt, w zależności od liczby etapów kompaktowania, może składać się z ponad 800 000 nadprzewodzących filamentów niobowych Nb w osnowie miedzianej Cu. Średnica uzyskiwanych filamentów nadprzewodzących jest mniejsza od 100 nm, natomiast ich długość dochodzi do kilkudziesięciu centymetrów.
    https://ewyszukiwarka.pue.uprp.gov.pl/search/pwp-details/P.410151
  • Głowica układu do badania materiałów i demonstracji zjawisk obserwowanych w obszarze niskich temperatur
    Numer uzyskanej ochrony 235349; data zgłoszenia 02.06.2015.
    Autorzy: prof. dr hab. Wojciech Kempiński, prof. dr hab. Zbigniew Trybuła, dr hab. Szymon Łoś, mgr inż. Marcin Wróblewski, prof. dr hab. inż. Maciej Chorowski, dr hab. inż. Jarosław Poliński, mgr inż. Katarzyna Chołast, mgr inż. Andrzej Kociemba, dr hab. Mateusz Kempiński, mgr inż. Marcin Włoszczyk
    Przedmiotem zgłoszenia jest głowica, pozwalająca regulować temperaturę osłony termicznej w przedziale 77÷63 K, w układach wykorzystujących ciecze kriogeniczne. Zastosowanie głowicy pozwala polepszyć warunki izolacji termicznej w układach służących do badań niskotemperaturowych, umożliwiając osiąganie temperatur poniżej przemiany 4He do fazy nadciekłej. Wynalazek głowicy jest przydatny w badaniach materiałów, np. filtrów entropowych, oraz samych cieczy kriogenicznych z uwzględnieniem kwantowych właściwości helu 4He.
    https://ewyszukiwarka.pue.uprp.gov.pl/search/pwp-details/P.412579
  • Sposób separacji cieczy albo gazu w instalacji rektyfikacyjnej, wypełnienie kolumny rektyfikacyjnej półkowej oraz zastosowanie materiałów nadprzewodnikowych
    Numer uzyskanej ochrony 245132; data zgłoszenia 15.11. 2021
    Autorzy wynalazku: prof. dr hab. Wojciech Kempiński, dr Jakub Niechciał, prof. dr hab. Zbigniew Trybuła, prof. dr hab. inż. Maciej Chorowski, mgr inż. Katarzyna Chołast, dr Piotr Banat, mgr Marian Rachwał, dr hab. Mateusz Kempiński, dr hab. inż. Jarosław Poliński, mgr inż. Andrzej Kociemba
    Przedmiotem zgłoszenia jest wypełnienie kolumny rektyfikacyjnej półkowej materiałem nadprzewodnikowym, którego mikrokrystality pełnią rolę półek rektyfikacyjnych. Przedmiotem zgłoszenia jest także sposób separacji cieczy albo gazu w instalacji rektyfikacyjnej. Zgłoszenie obejmuje również zastosowanie nadprzewodnika w postaci sypkiej albo spieku jako wypełnienie kolumny rektyfikacyjnej półkowej, w który w stanie nadprzewodzącym stanowi półki rektyfikacyjne do separacji mieszanin, spełniających termodynamiczne warunki pracy kolumny rektyfikacyjnej.
    https://ewyszukiwarka.pue.uprp.gov.pl/search/pwp-details/P.439502

 

Projekty

Projekty naukowe

  • Projekt NCN (Sonata 8) Uniwersalne cechy przewodnictwa elektrycznego przewodników protonowych (2015-2018), kierownik: dr inż. P. Ławniczak
  • Projekt NCN (Miniatura 1) Wpływ mikro- i nanostruktury na własności dielektryczne i magnetyczne kompozytów celuloza - spinel kobaltowy (2017-2018), kierownik – dr hab. E. Markiewicz
  • Projekt NCN Niskotemperaturowe badania polarnych stanów w kwantowym paraelektryku K1-xLixTaO3 (2011-2015), kierownik: prof. dr hab. Z. Trybuła
  • Projekt MNiSW Nadprzewodzący i spinowo spolaryzowany transport w układach hybrydowych ferromagnetyk-nadprzewodnik oraz kropkach kwantowych (2010-2015), kierownik: dr hab. J. Martinek, prof. IFM PANEuropean Union Project Source of Electron in Entanglement in Nano Devices (SE2ND) (2011-2015), kierownik: dr hab. J. Martinek, prof IFM PAN
  • Projekt MNiSW Jedno i wielofazowe ferroiki i multiferroiki (2010-2014), kierownicy: prof. B. Hilczer, dr hab. M. Połomska, prof. IFM PAN
  • Projekt SIMUFER COST Action - Single- and multiphase ferroics and multiferroics with restricted geometries (2010-2014), kierownik - MC Substitute Member: dr hab. M. Połomska, prof. IFM PAN
  • Projekt MNiSW Nanoukłady węglowe dla elektroniki molekularnej i spintroniki (2010-2013), kierownik: dr hab. W. Kempiński, prof. IFM PAN,
  • Projekt MNiSW (POL-POSTDOC) Otrzymywanie nanostruktur ferroelektrycznych (2005-2009), kierownik: dr I. Szafraniak, opiekun naukowy – prof. B. Hilczer
  • Projekt MNiSW Wpływ ciśnienia na nieliniowy charakter przewodnictwa protonowego – eksperyment i modelowanie (2010-2014), kierownik: dr hab. M. Zdanowska-Frączek, prof. IFM PAN
  • Projekt MNiSW Otrzymywanie i własności nanocząstek wybranych materiałów funkcjonalnych (2011-2013), kierownik: dr hab. B. Andrzejewski, prof. IFM PAN

Projekty badawczo-rozwojowe

  • Projekt NCBiR Pozyskiwanie izotopu 3He z ciekłego 4He (2012-2016), projekt realizowany w ramach konsorcjum: IFM PAN - PGNiG S.A. Odział w Odolanowie – PWr, lider projektu – IFM PAN, kierownik - dr hab. W. Kempiński, prof. IFM PAN
    https://www.ifmpan.poznan.pl/pl/ncbir-pihe3-innotech.html
  • Projekt 02.03.02-22-0006/15 - Opracowanie kompozytowego materiału ekranującego pole elektromagnetyczne w wysokich i niskich częstotliwościach – beneficjent: ADR Technology Stanisław Wosiński, kierownik zespołu badawczego w IFM PAN – dr hab. B. Andrzejewski, prof. IFM PAN