Badania
Obszar badawczy
Struktura elektronowa i oscylacyjna molekularnych materiałów funkcjonalnych.
Cele badawcze
Poszukujemy nowych przewodników protonowych o wysokim przewodnictwie i stabilności termicznej, które mogłyby być wykorzystywane jako źródła zielonej energii. Ich potencjalne zastosowanie, to elektrolity w ogniwach paliwowych, w których jedynymi produktami ubocznymi jest woda oraz ciepło. Celem prowadzonych w Zakładzie Kryształów Molekularnych badań jest zrozumienie natury zjawisk fizycznych, które zachodzą w przewodnikach protonowych. Umożliwiłoby to nam zaprojektowanie nowych, funkcjonalny materiałów, które miałyby szansę zastosowania w innowacyjnej gospodarce. W obliczu rosnącego zapotrzebowania na energię elektryczną i wzrostu jej cen podejmujemy również działania związane z poszukiwaniem nowych alternatywnych źródeł energii, które powinny być niewyczerpywane, łatwo dostępne, wydajne oraz przyjazne środowisku. Duże nadzieje budzi możliwość wykorzystania czystej energii pochodzącej z promieniowania słonecznego. Celem naszych badań jest zaprojektowanie oraz otrzymanie nowego donorowo-akceptorowego kopolimeru, z wąską przerwą energetyczną, który mógłby być zastosowany w wydajnych ogniwach słonecznych. Od wielu lat prowadzimy badania właściwości fizycznych przewodników organicznych, które mogłyby znaleźć zastosowanie w elektronice przyszłości. Nasze badania ukierunkowane są na poznanie natury przemian fazowymi indukowanych temperaturą lub ciśnieniem, zjawisk uporządkowania ładunkowego, korelacji elektronowych, fluktuacji rozkładu ładunku oraz sprzężeń elektronów z drganiami wewnętrznymi molekuł.
Profil badawczy
Wykorzystując eksperymentalne oraz teoretyczne metody spektroskopii molekularnej prowadzone są badania struktury oscylacyjnej oraz elektronowej przewodzących elektronowo oraz jonowo materiałów organicznych. Pomiary wykonywane są w szerokim zakresie spektralnym od dalekiej podczerwieni do ultrafioletu w funkcji temperatury (od 1,8 do 900 K) i ciśnienia (do 20 GPa). W Zakładzie Kryształów Molekularnych zajmujemy się obliczaniem (metody DFT oraz TD-DFT) i interpretacją widm teoretycznych. W badaniach wykorzystujemy następujące techniki i metody eksperymentalne fizyki fazy skondensowanej: technika widm transmisyjnych/absorpcyjnych w świetle spolaryzowanym, technika widm odbicia zwierciadlanego w świetle spolaryzowanym w szerokim zakresie kątów padania i odbicia, technika widm odbicia dyfuzyjnego, technika osłabionego całkowitego wewnętrznego odbicia, technika widm odbiciowo - absorpcyjnych od cienkich warstw naniesionych na podłoże metaliczne, metoda rozpraszania Ramana, pomiary przewodności elektrycznej właściwej metodą czteroelektrodową, analiza termooptyczna, metody spektroskopii fluorescencyjnej, luminescencji oraz fosforescencji.